ARANEAL

Reference Manual

Version 1.1 (Work In Progress)

Jevgeni Kabanov, Rein Raudjarv, Toomas Romer, Taimo Peelo, Martti Tamm

Table of Contents

O I 14 oo [Tox 1 o o PO PPRSRR 1
O O Y1 T PR 1
2 @ o= 0112 (Lo o PRSPPI 2
2. Components, WidgetS N0 SEIVICESccoiiiiiiiiiiiiee ettt e s e e s e e e s e e e ennes 5
P22 I [11 £ [F o 1 o o IO 5
2.2. COAING CONVENLIONScuieiieeiitiee e ettt e ettt e e sttt e et e e e e et et e e e asb e e e e e e nbe e e e e anbe e e e eannneeeeennes 5
2.3. Components and ENVIFONMENTcoiiiiiiiiiiiiiie et e e e e st e e e e e e s s san b e e e e e e e e s eaneeees 6
2.4. InputData and OULPUIDELAeeeeiiurriieeiiieiee et e et e s e e s e e snbneeeean 10
RS = o T o SO PPRSRR 13
P2 I (o T £ PRSP 14
2.7. APPLICALEON WILGELS ...ttt e e e e s e e e s nnreeeeean 16
2.8. SEANUAIA CONEEXESeeeeiiiiiieeiiiiiee ettt e st e e e ettt e e st e e e st b e e e e e sbe e e e e snbeeeeeesnnaeeeeesntneeeeans 20
3. Framework and ConfigUIalionc.eeeeiiieiieeiiiiiee ettt e e e e s e e e s snbeneeean 31
I @Y= V= 1 SRR 31
3.2. Application CONfIQUIBLIONeiieiiieiie ettt e et e e e e e e e s snbneeeean 31
3.3. Framework ASSEMDIYcooiiiiiiiiieeeee e 34
3.4, Framework CONfIQUILIONccoiiiiiiiiii et e e e e e e e e s s et raaeeeeeas 35
3.5. Framework COMPONENEScoiiieriieiiieie e ettt e ettt e e e e e e e st e e s e e e e e e e e s annreeeean 37
T O 1 1 1= TP PRSPPI 48
4. JSP AN0 CUSLOM TGS +eieeiuutrieeiiuititeeaitreeesatteeeeaastee e e s asee e e e e assb et e e e sbe e e e s asbb e e e e aanbeeeeeanbeeeeaanbeneeeans 49
4.1. Aranea Standard Tag Librarycoooeveviiiiiiiiiiieeeeeee ettt 49
A2, SYSLEIM TAYS ..eveeeeieeeeiiiiittie e e e e ettt e e e e s e e bbbt e e e e e e e s s s bbb b b e et e e e e e e s e b bbe e et e e e e e s e annbrreeeeeeas 49
G T Y= Lo = o 52
T T o = = L SRR 55
4.5. EVENt-ProdUCING TAOS ..oeiuveeeeeiitiieeaatieee e ettt e e st e st e et e e st e e s sne e e e e anne e e e aanneeeeean 57
T o Y = 01 = £ TR 59
4.7. Putting WidgetSto WOrK With JSPoiiiiiiiiceee et 60
S I (Y U | = P 61
4.9. PreSentalion TAOS ...o.vveeeeiiuiiiee ettt e et e e e ettt e e sttt e e e e e e et et e e s aabe s e e e asbr e e e e ebbe e e e e anbreeeeans 63
4.10. Programming JSPSWIthOUt HTIMLoiiiiiiiiiiiie e 65
4.11. CUStOMIZING TAY SLYIES .evveieieeee it e e e e e et r e e e e e s s et aaeeeaeas 66
4.12. MBKING NEW JSP TAOSeeeeeiiitiieeeiiee ettt e et e et e e s e e e s e e e e s anbreeeean 66
5.Formsand Data BinAiNgooccuiiiiiiiie e e e e e e s st e e e e e e et raa e aas 71
Lo I 0 1 4 ST PTTRR P PPRPPPPRPPTN 71
Lo 0] 0 ST A =0 L P 80
5.3 FOMM LISES itiiiiiiiite ettt ettt ettt et e e e et bt e e e et e e e e e nnbn e e e e e nnbreeeeans 97
5.4, FOMM LISIS ISP TAOS ...cevveeeeeiieiee e ettt ettt e e e e s s e e e e e e e e e s e e e e ans 101
6. Listsand QUENY BIrOWSINGccooiiiiiiiiiiie e e ettt e e e e st e e e e e e e s s st e e e e e e e s s e satnbaa e e e e e e e s s ananneees 105
200 I 1 11 L o1 o o PR SSPPPRRRR 105
B.2. LISES AP ettt e e e e e e a e e e e a e e e e e nre e e e e nraeeeean 105
6.3, SEIECHING LISE ROWS ..ottt e e e e e e e s snbneeeeans 118
8.4, LISE ISP TAUS -reeeeiiutieeeeeiiiiieeeeitiieeeasstieee e e sttt e e e sttt e e e asseeaeeasteeeeeansseeeeaansneeeeannseeeeeansnnenaans 118
6.5, EQITADIE LISES ...eiiiiiiiii ettt ee e 123
7. Other UIlID WIAQELS ..ottt e e e e e s e e e e 125
0 T I = =< PP RRP PSRRI 125
A I o < SRR OUPSRRRPRR 126
7.3 CONEXE MBNU <. 127

8. Third-party INTEOIratiONcooceiiiiiiiiie e e e e e e e s e e e e s snnreeeeans 131
8.1. Spring Application FramMEWOIKcieeiiiiiiiiieiie e e e e e e e 131
9. JAVASCIIPL LIDI@ITES ..oeiiiiiiiee ittt e e et e e e e e e e s e e e eans 133
9.1. Third-party Javascript Librariesccccceeee i, 133
0.2. Aranea ClientSide JAVASCIIPLvveieiiiiiie ettt ettt e e s e e snbe e e e snbaeeeeans 134

iv Aranea

Chapter 1. Introduction

1.1. Overview

Aranea is a Java Hierarchical Model-View-Controller Web Framework that provides a common simple
approach to building the web application components, reusing custom or general GUI logic and extending the
framework. The framework is assembled from a number of independent modules with well-defined
responsibilities and thus can be easily reconfigured to perform new and unexpected tasks. The controller is
separated into a hierarchy of components that can react to user or system events. The framework is completely
view agnostic, but provides a thorough library of JSP custom tags that target building GUIs without writing a
line of HTML. All components and modules are ssmple Plain Old Java classes without any XML mappings
and thus usual Object-Oriented design techniques can be applied. Aranea manages the component field
persistence automatically and inherently supports nested state.

Araneaislogically separated in the following modules:

Aranea Core
Contains the core interfaces and base implementations that define Aranea base abstractions and their
contracts. Includes packages or g. ar aneaf r anewor k and or g. ar aneaf r amewor k. cor e and is packaged into
aranea-core.jar.

Aranea Framework
Framework module sits on top of the Core module and contains the implementation of the Aranea Web
Framework that does not directly depend on any container. Framework module includes package
or g. ar aneaf r amewor k. f r amewor k and its subpackages and is packaged into ar anea- f r amewor k. j ar .

AraneaHTTP
HTTP module extends the Framework module with services that use a Servlet container. Servlet module
includes package org.araneaframework.http and its subpackages and is packaged into
aranea-servlet.jar.

Aranea I ntegration
Spring module integrates Aranea with the Spring |0C container. Spring module includes package
org. araneaframework.integration.spring and its subpackages and is packaged into
aranea-spring.jar.

Aranea UiLib
UiLib module contains reusable GUI widgets and supporting API. UiLib module includes package
or g. ar aneaf r amewor k. ui | i b and its subpackages and is packaged into ar anea-ui l i b. j ar.

Aranea JSP
JSP module contains a custom tag library, including tags that render UiLib widgets. JSP module includes
package or g. ar aneaf r amewor k. j sp and its subpackages and is packaged into ar anea- j sp. j ar.

Aranea Backend
Backend module contains supporting classes that are to be used in the application service layer (e.g.
backend list data provider helper classes). Backend module includes package
or g. ar aneaf r amewor k. backend and its subpackages and is packaged into ar anea- backend. j ar .

These modules depend on each other as follows:

1.2. Organization

1.2. Organization

Therest of this manual is organized as follows:

Components, Widgets and Services
This chapter describes the core Aranea abstractions in detail generally not necessary to just develop
application code so it can be skipped during the first reading. It is quite dry on the examples, but its
understanding is crucia to develop Aranea extensions. To get a quick understanding of how to program
with widgets read Section 2.7, “ Application Widgets'.

Framework and Configuration
This chapter describes how to assemble and configure both applications and the Aranea framework itself. It
also describes in detail main components of the Aranea framework. The most interesting part for a beginner
would be Section 3.2, “Application Configuration”.

JSP and Custom Tags
This chapter describes how to render Aranea widgets and services with custom JSP tag library supplied in
the Aranea distribution.

Forms and Data Binding
This chapter describes how Aranea manages reading data from request, validating and converting it to the
model objects.

Lists and Query Browsing
This chapter describes how to make pageable, filterable and orderable tablesin Aranea.

2 Aranea

1.2. Organization

Uilib widgets
This chapter looks at various other Uilib widgets and explains their use.

Third-party Integration
This chapter describes Aranea integration hooks for third-party toolkits and frameworks. At the moment it
includes Spring.

Javascript Libraries
This chapter describes the Javascript libraries that Aranea uses and the Javascript API that Aranea provides.

Aranea 3

Chapter 2. Components, Widgets and Services

2.1. Introduction

Aranea framework and component model are very simple and implemented purely in Plain Old Java. There are
no XML mappings, code generation or bytecode enhancement. The whole component model consists mainly of
five interfaces: or g. ar aneaf r amewor k. Conponent , org. ar aneaf r amewor k. Servi ce,
or g. ar aneaf ramewor k. W dget, org. ar aneaf r amewor k. Envi ronment, or g. ar aneaf r amewor k. Message and
some conventions regarding their usage and implementation.

This chapter describes the core Aranea abstractions in detail generally not necessary to just develop application
code so it can be skipped during the first reading. It is quite dry on the examples, but its understanding is
crucia to develop Aranea extensions. To get a quick understanding of how to program applications with
widgets read Section 2.7, “ Application Widgets'.

2.2. Coding Conventions

2.2.1. Checked versus Unchecked Exceptions

It is our firm belief that checked exceptions are unnecessary in Controller and therefore Aranea will in most
cases alow to just declare your overriding method as t hrows Excepti on. On the other hand no framework
interfaces throw checked exceptions so the exception-handling boilerplate can be delegated to a single
error-handling component.

2.2.2. Public versus Framework Interfaces

Since the application programmer implements the same components that are used for framework extension, it is
important to discourage the access to public framework interfaces (which are necessarily visible in the
overridden classes). Thus asimple convention is applied for core framework interfaces, which is best illustrated
with the following example.

public interface Service extends Conponent, Serializable {
public Interface _getService();

public interface Interface extends Serializable {
public void action(Path path, |nputData input, CQutputData output) throws Exception;

}
}

As one can seg, the real interface methods are relocated to an inner interface named I nt er f ace, that can be
accessed using a method _get <I nt er f aceNane>() , which starts with an underscore to discourage its use. As a
rule of athumb, in Araneathe methods starting with an underscore should only be used, when one really knows
what oneis doing.

2.2.3. Components and Their Orthogonal Properties

Aranea has three main types of components: or g. ar aneaf r amewor k. Conponent ,
or g. ar aneaf r amewor k. Servi ce and or g. ar aneaf r amewor k. W dget . These components also have a number of
orthogonal properties (like Vi ewabl e, Conposite), which are represented by interfaces that need to be

2.3. Components and Environment

implemented. Since some particular APl methods expect a particular type of component with a particular
property (e.g. Vi ewabl ewW dget) one would either have to abandon static type safety or define a lot of
meaningless interfaces that would clutter the Javadoc index and confuse the source code readers. The approach
chosen in Araneais to make such interfaces internal to the property, like in the following example.

public interface Viewabl e extends Serializable {
public Interface _getViewable();

interface Interface extends Serializable {
public Object getViewwodel () throws Exception;

}

public interface Viewabl eConponent extends Vi ewabl e, Conponent, Serializable {}
public interface Viewabl eServi ce extends Vi ewabl eConponent, Service, Serializable {}
public interface Viewabl eWdget extends Vi ewabl eService, Wdget, Serializable {}

2.3. Components and Environment

or g. ar aneaf r amewor k. Conponent represents the unit of encapsulation and reuse in Aranea. Components are
used to both provide plug-ins and extensions to the framework and to implement the actual application-specific
code. A component has (possibly persistent) state, life cycle, environment and a messaging mechanism.

public interface Conponent extends Serializable {

publ i ¢ Scope get Scope(); [** @ince 1.1 */
public Environnment getEnvironment(); /** @ince 1.1 */
public bool ean isAlive(); [** @ince 1.1

publ i ¢ Conponent.Interface _get Conmponent();

public interface Interface extends Serializable {
public void init(Environment env) throws Exception;
public void destroy() throws Exception;
public voi d propagate(Message nessage) throws Exception;
public void enable() throws Exception;
public void disable() throws Exception;

The component life cycle goes as follows:

1. init() —notifies the component that it should initialize itself passing it the Envi r onment . A component

can beinitialized only once and the environment it is given stays with it until it is destroyed.

All other calls (like pr opagat e()) should be done when a component is alive, initialized and enabled.

3. disable() —notifies the component that it will be disabled and will not receive any cals until it is
enabled again. A component is enabled by default.

4. enabl e() —notifies the component that it has been enabled again. This call may only be done after a
di sabl e() cal.

5. destroy() —notifies the component that it has been destroyed and should release any acquired resources
and such. A component can be destroyed only once and should be initialized before that.

Further in the text we will refer to an initialized and not destroyed component instance that has a parent as live

and one that has not been disabled or has been re-enabled as enabled.

N

Aranea provides a base implementation of the Conponent — org. ar aneaf r amewor k. cor e. BaseConponent .
This implementation mainly enforces contracts (including life cycle and some basic synchronization). A base
class for application development or g. ar aneaf r amewor k. cor e. BaseAppl i cat i onConponent iSalso available.

Component methods not dealing with lifecycle or messaging are accessible without getting at
Conponent . I nterface. Component. get Scope() returns scoped identifier that uniquely identifies that

6 Aranea

2.3.1. Composite Pattern and Paths

Conponent in component hierarchy. Conponent . get Envi ronment () returns information of Environnment in
which Conponent livesand Conponent . i sAli ve() alows component to check whether itisliving at all :).

2.3.1. Composite Pattern and Paths

Composite pattern refers to a design approach prominent (specifically) in the GUI modeling when objects
implementing the same interface are arranged in a hierarchy by containment, where the nodes of the tree
propagate calls in some way to the |eafs of the tree. It is shown on Figure 2.1, “Composite design pattern”.

Client
= LComponent ; cormponent ~L, AComponent *
+ void ; aparationf)
L
Leafl Leaf2 Composite
 void : operation) + woid : operation) = AComponent]] : children
+ <roid : operation)

+ LComponent : reraoveChild{ A Corponent child)
+ woid : addChild{ A Cormponent child)

for all ¢ in children: -
c.operation);

Figure 2.1. Composite design pattern

Composite is one of the main patterns used in Aranea. It is mainly used to create a Hierarchical Controller
using Corponent containment. In terms of Conponent interface Composite is used to propagate life cycle events
and route messages (see Section 2.3.3, “Messaging Components”).

The flavor of the Composite pattern as used in Aranea typically means that every contained component has
some kind of an identifier or name that distinguishes it from other children of the same parent (note that the
child is not typically aware of its identifier). This identifiers are used to route messages and events and can be
combined to form a full identifier which describes a "path” from the root component to the child in question.
This paths are represented by a Iterator-like interface or g. ar aneaf r amewor k. Pat h.

public interface Path extends Cl oneable, Serializable {
public Object getNext();
public Object next();
publ i c bool ean hasNext ();

}

Each next () call will return the identifier of the next child in the path to the descendant in question. Default
implementation (or g. ar aneaf r amewor k. cor e. St andar dPat h) uses simple string identifiers like "a' or "b" and
combines them using dots forming full paths like "a.b.c".

A Composite component may want to make its children visible to the outside world by implementing the

Aranea 7

2.3.2. Environment

org. ar aneaf r amewor k. Conposi t e interface:

public interface Conposite extends Serializable {
public Conposite.lnterface _getConposite();
public interface Interface extends Serializable {
public Map get Children();
public void attach(Cbject key, Conponent conp);
publ i ¢ Conponent detach(Object key);

}
}

This interface allows to both inspect and manipulate component children by attaching and detaching them from
the parent component.

As most of the Aranea abstractions are built to be used with the Composite concept we will illustrate it in
greater detail when examining other abstractions and their implementation. Further on we will assume that any
Conponent has a parent that contains it and every child has some kind of name in relation to the parent unless
noted otherwise (obviously there is at least one Composite that does not have a parent, but we don't really care
about that at the moment).

2.3.2. Environment

or g. ar aneaf r amewor k. Envi ronnent IS another important concept that represents the way Conponent S interact
with the framework. Envi r onnent interface is rather smple:

public interface Environnment extends Serializable {

public Object getEntry(Cbject key);

public Object requireEntry(Cbject key) throws NoSuchEnvironment EntryExcepti on;
}

It basically provides means of looking up entry objects by their key. A typical usage of the Envi r onment can be
illustrated with an example.

MessageCont ext nmsgCt x = (MessageCont ext) get Environment (). get Entry(MessageCont ext . cl ass);
nmsgCont ext . showl nf oMessage("Hell o worl d!");

As one can see from the example Envi r onment will typically allow to look up implementations of the interfaces
using their d ass asthe key (thisisin fact an Aranea convention in using and extending the Envi r onnent). The
interfaces serving as keysfor Envi ronnent entries are referred to as contexts. It is thus not unlike JINDI or some
other directory lookups that allow to hold objects, however unlike them Envi r onnent is very specific to the
Conponent it isgiven to, and can be influenced by its parents. In fact, all contexts available in the Envi r onnent
will be provided to the Conponent by its parents or ancestors (in the sense of containment rather than
inheritance). Thus, two different Conponent s may have completely different Envi r onnent s.

A default implementation of Envi ronment IS or g. ar aneaf r amewor k. cor e. St andar dEnvi ronnent . It provides
for creating an Envi ronment from aj ava. util . Map, or extending an existing environment with map entries.

A component can provide an environment entry to its descendant, by providing it to the initiaizer of its direct
child. For instance the MessageCont ext could be provided by the following message component:

public class MessageFilterService inplenments MessageCont ext, Conponent, Service {
protected Service chil dService;
public void setChil dService(Service chil dService) {
this.childService = chil dServi ce;
}

8 Aranea

2.3.3. Messaging Components

public void init(Environment env) {
chil dService.init(
new St andar dEnvi ronnment (env, MessageCont ext.cl ass, this);

}

/I MessageCont ext i npl enentation. ..
public String show nfoMessage(String nessage) {
/| Show nessage to user...

}
...

After that the chi | dServi ce, its children and so on will be able to use the MessageCont ext provided by
MessageFi | t er Servi ce. Of course this can be done simpler as shown in examples in this chapter, but thisis
how most of the componentsin Aranea provide new contexts to the Envi r onnent .

Sometimes, however, one may want to make his or her component or widget independent from the specific
Envi ronment . This can be achieved by using or g. ar aneaf r amewor k. cor e. Rel ocat abl eDecor at or :

Service child = new Rel ocat abl eDecor at or (new MyW dget ());

addW dget ("c", child);
For example, this technique is used when a user clones a thread (middle mouse button click on alink), and itis
necessary to clone the state. Then each widget is cloned, and a new Envi r onmet is provided to them.

2.3.3. Messaging Components

So far, we have looked at the component management and environment. However what makes the component
hierarchy such a powerful concept is messaging. Basically, messaging allows us to send any events to any
component in the hierarchy (including al components or a specific one). The messaging is incorporated using
theor g. ar aneaf r amewor k. Message interface

public interface Message extends Serializable {
public void send(Object id, Conponent conponent) throws Exception;

}
and Conponent . propagat e(Message message) Mmethod. The default behavior of the propagate() method
should be to send the message to all component children, passing the send() method the identifier of the child
and the child itself. It is up to the message what to do with the child further, but typically Message just calls the
propagat e() method of the child passing itself as the argument after possibly doing some custom processing
(the doubl e-dispatch OO idiom).

A standard Message implementation that uses double-dispatch to visit al the components in hierarchy is
or g. ar aneaf r amewor k. cor e. Br oadcast Message. |t usage can beillustrated with the following example:

Message myEvent = new Broadcast Message() {
public voi d execute(Conponent conponent) throws Exception {
i f (conponent instanceof MyEventLi stener)
((MyEvent Li st ener) conponent).onM/Event (dat a);
}

}
nyEvent . send(nul |, root Conponent);

This code will call all the componentsin the hierarchy that subscribed to the event and pass them a certain dat a
parameter. As one can see, when calling Message. send() we will typically pass nul | as the first parameter,
since it is needed only when propagating messages further down the hierarchy. Note that messages can be used

Aranea 9

2.3.4. State and Synchronization

to gather data from the components just as well as for passing data to them. For example one could construct
message that gathers all For mAr dget s from the widget hierarchy:

public static class FormA dget Fi nder Message extends Broadcast Message {
List fornlist = new ArraylList();

protected void execut e(Conponent conponent) throws Exception {
i f (conponent instanceof org.araneafranmework. uilib.form FornmN dget) {
fornii st. add(conponent) ;

}
}

public List getAll Forms() { return forniist; }
}

Another standard Message implementation is or g. ar aneaf r amewor k. cor e. Rout edMessage, which allows us to
send a message to one specific component in the hierarchy asin the following example:

Message nyEvent = new Rout edMessage("a.b.c") {
public void execut e(Conmponent conponent) throws Exception {
((MyPer sonal Conponent) conponent) . nyMet hod(...);

}

}
myEvent . send(nul |, root Conponent);

This code will send the message to the specific component with path "a.b.c" and call nymMet hod() oniit.

2.3.4. State and Synchronization

The handling of persistent state in Aranea is very simple. There are no scopes and every component state is
saved until it is explicitly removed by its parent. This does not mean that all of the components are bound to the
session, but rather that most components will live a period of time appropriate for them (e.g. framework
components will live as long as the application lives, GUI components will live until user leaves them, and so
on). This provides for a very flexible approach to persistence alowing not to clutter memory with unused
components.

The end result is that typically one needs not worry about persistence at all, unless one is programming some
framework plug-ins. All class fields (except in some cases tr ansi ent fields) can be assumed to persist while
the host object islive.

However such handling does not guarantee that the component state is anyhow synchronized. As a matter of
fact most of the framework components outside the user session should be able to process concurrent calls and
should take care of the synchronization themselves. However application components are typicaly
synchronized by the framework. More information on the matter will follow in Section 2.7, “Application
Widgets'.

2.4. InputData and OutputData

I nput Dat a iS Aranea abstraction for a request, which hides away the Servlet APl and allows us to run Aranea
on different containers (e.g. in a portlet or behind aweb service).

I nput Dat a provides access to the data sent to the component. This data comesin two flavours:

* getScopedDat a(Path scope) returns ajava.util.Map with the data sent specially to conponent, which
unique identifier in the component hierarchy is scope. To get at this data, one can use construction

10 Aranea

2.4.1. Extensions

i nput Dat a. get ScopedDat a(get Scope() . t oPat h()) from a component.
e getd obal Data() returnsaj ava. util . Map with the data sent to the application generally.
In case Araneais running on top of a servlet both these maps will contain only st ri ngs. If one wants to access
multi-valued parameters in servlet environment Standar dServl et | nput Dat a. get Par anet er Val ues(Stri ng
name) method should be used (returns stri ng array). In case of the usual path and scope implementation (as
dot-separated strings) global data will contain the submitted parameters with no dots in them and scoped data
will contain the parameters prefixed with the current component scope string.

Anaogically cutputbata is Aranea abstraction for response. Htt pQut put Data being the subinterface and
St andar dSer vl et Qut put Dat a implementation for servlet environments.

As I nput Dat a and Qut put Dat a are typically connected, they can be retrieved from the other *bat a structure
using correspondingly get Qut put Dat a() and get I nput Dat a() methods.

2.4.1. Extensions

Both InputData and OutputData implement a way to extend their functionality without wrapping or extending
the objects themselves. Thisis achieved by providing the following two methods:

voi d extend(Cl ass interfaced ass, bject extension)
Qoj ect narrow(Cl ass interfaceC ass);

The following example should give an idea of applying these methods:

i nput . ext end(Fi | eUpl oadExt ensi on. cl ass, new Fi | eUpl oadExt ensi on(i nput));

Fi | eUpl oadExt ensi on fil eUpl oadExt =

(Fi | eUpl oadExt ensi on) i nput.narrow Fil eUpl oadExt ensi on. cl ass);
if (fileUploadExt. upl oadSucceeded()) {

/...

}

Note

Both Htt pServl et Request and Htt pServl et Response are available as | nput Data and Cut put Dat a
extensions respectively.

2.4.2. HttpInputData and HttpOutputData

Although all of the core Aranea abstractions are independent of the Servlet APl and web in general, we also
provide a way to manipulate low-level HTTP constructs. To that goa we provide two interfaces,
Ht t pl nput Dat a and Ht t pQut put Dat a, which extend respectively | nput Dat a and Qut put Dat a.

Let's examine the Ht t pl nput Dat a. First of al it provides methods that are similar to the ones found in the
Ht t pSer vl et Request :

Method Description

Iterator getParameterNanmes() Returns an iterator over names of the parameters submitted with the
current request.

String[] Returns the array of values of the particular parameter submitted with

Aranea 11

2.4.2. HttplnputData and HttpOutputData

Method

get Par anet er Val ues(String
name)

String get Character Encodi ng()

set Char act er Encodi ng(String
encodi ng)

Description

the current request.

Returns the character encoding that is used to decode the request
parameters.

Sets the character encoding that is used to decode the request
parameters. Note that this must be called before any parameters are read
according to the Servlet specification.

String get Cont ent Type()

Local e get Local e()

Note

Returns the MIME content type of the request body or nul | if the body
islacking.

Returns the preferred Locale that the client will accept content in, based
on the Accept-Language header. If the client request doesn't provide an
Accept-Language header, this method returns the default locale for the
server.

Unlike I nput bat a methods the parameters are presented as is and include both global and scoped
parameters (the scoped ones are prefixed by the full name of the enclosing widget).

However next methods are a bit different from the Ht t pSer vl et Request aternatives:

Method
String get Request URL()

String get Cont ai ner URL()

Description
Returns the target URL of the current request.

Returns an URL pointing to the Aranea container (in most cases the
dispatcher servlet).

String get Cont ext URL()

String getPath()

pushPat hPrefi x(String

pat hPrefi x)

popPat hPref i x()

Returns an URL pointing to the Aranea container context (in most cases
the web application root).

Returns the path on the server starting from the dispatcher servlet that
has been submitted as the part of the request target URL.

Consumes the path prefix alowing children to be mapped to a relative
path.

Restores the previously consumed path prefix.

The interesting part here are the methods that deal with the path. The problem is that unlike most common
cases Aranea components form a hierarchy. Therefore if a parent is mapped to path prefix "myPath/*" and its
child is mapped to a path prefix "myChildPath/*" if the path handling were absolute the child would never get
the mapped calls. This is due to the child being really mapped to the path "myPath/myChildPath". Therefore
the parent must consume the prefix "myPath/" using method pushPat hPrefi x() and then the child will be
correctly matched to the relative path "myChildPath".

Ht t pQut put Dat a contains methods that are comparable to the onesfound in Ht t pSer vi et Response:

12

Aranea

2.5. Services

Method Description

String encodeURL(String url) Encodes the URL to include some additional information (e.g. HTTP
session identifier). Note that Aranea may include some information not
present in the servlet spec.

sendRedirect (String location) SendsanHTTP redirect to a specified location URL.

Qut put St ream Returns an cut put St ream that can be used to write to response. Note

get Qut put St r eant() that unlike the Servlet specification, Aranea permits to use stream and
writer interchangeably.

PrintWiter getWiter() Returnsaprint Witer that can be used to write to response. Note that
unlike the Servlet specification, Aranea permits to use stream and writer
interchangeably.

set Cont ent Type(String type) Sets the MIME content type of the output. May include the charset, e.g.
"text/ntml; charset=UTF-8".

Local e get Local e() Returns the local e associated with the response.
String get CharacterEncodi ng() Returnsthe character encoding used to write out the response.

voi d Sets the character encoding used to write out the response.
set Char act er Encodi ng(String
encodi ng)

2.5. Services

or g. ar aneaf r amewor k. Ser vi ce iS a basic abstraction over an event-driven Controller pattern that inherits life
cycle, environment and messaging from the Conponent . The difference from the Conponent isasfollows:

public interface Service extends Conponent, Serializable {
public Interface _getService();

public interface Interface extends Serializable {
public void action(Path path, InputData input, CQutputData output) throws Exception;

}
}

The method acti on() is similar to the servi ce() method in the Servliet API, | nput Dat a being an abstraction
over a request and cutputData being an abstraction over a response (see Section 2.4, “InputData and
OutputData’). Thus a service will both process the request parameters and render itself during this method call.
However unlike servlets services can be Composite and may be defined both statically (on application startup)
or dynamically (adding/removing new services on the fly).

Services are the basic working horses of the Aranea framework. They can generally be both synchronized and
unsynchronized depending on the context. Services may also have persistent state and their lifetimeis explicitly
managed by their parent (see Section 2.3.4, “State and Synchronization”). The service life cycle is very
simple—aslong asthe serviceislive and enabled it can receive acti on() calls, possibly several at atime.

Aranea provides a base implementation of the Service — org. ar aneaf r amewor k. cor e. BaseSer vi ce and a
base class for application development or g. ar aneaf r amewor k. cor e. BaseAppl i cat i onSer vi ce.

Aranea 13

2.6. Widgets

2.5.1. Filter Services

One of the most common ways to use the services is to create a filter service, that wraps a child service and
provides some additional functionality and/or environment entries. To that purpose Aranea provides a filter
base class — or g. ar aneaf r amewor k. f r amewor k. cor e. BaseFi | t er Servi ce. This class implements all of the
Service methods, by default just delegating them to the corresponding child methods. A common thing to do is
override the acti on() method to add functionality and get Chi | dEnvi r onnent () to add environment entries, as
shown in the following example:

public class StandardSynchroni zi ngFilterService
extends BaseFilterService {

prot ected Environment get Chil dEnvironnment () {
return new Standar dEnvi ronment (
get Envi ronnent (),
Synchroni zi ngCont ext . cl ass,
new Synchroni zi ngContext () {});

}

prot ected synchroni zed void acti on(
Pat h pat h,
| nput Dat a i nput,
Qut put Dat a out put) throws Exception {
super. action(path, input, output);
}
}

More information on services and other components that make up the framework can be found in Chapter 3,
Framework and Configuration.

2.6. Widgets

Widget is the main abstraction used to program applications in Aranea. Widget is specifically any class
extending the org. ar aneaf r amewor k. W dget interface and adhering to a number of conventions. More
generally, widgets are components that function both as controllers and GUI elements, and that have the
following properties:

Synchronized
The widget is almost always accessed by a single thread, therefore there is rarely any need to think about
synchronization. Usually one can assume that there is only one user using the widget at any time and
program to service this user without any concern for concurrency. There is only one exception to this: one
of the default w dget implementations is BaseAppl i cati onW dget which allows registration of action
listeners (see Section 2.7.3, “Action Listeners’) which can be invoked asynchronously when so desired.

Stateful
When programming widgets there is no need to concern oneself with juggling the Ht t pSessi on attributes
or similar low-level mechanics. Widget state (meaning the class fields) is guaranteed to be preserved as
long as the widget is alive. One can just use these fields to save the necessary data without any external
state management, thus adhering to the rules of object-oriented encapsulation.

The latter two properties make widgetsidea for programming custom application components.

Widgets extend services with a request-response cycle:

public interface Wdget extends Service, Serializable {
public Interface _getWdget();

14 Aranea

2.6.1. ViewModel and Rendering

public interface Interface extends Serializable {
public void update(lnputData data) throws Exception;
public void event(Path path, |InputData input) throws Exception;
public void render (CQut put Data output) throws Exception;

}
}

Although widgets extend services, a widget will function during one request either as a widget or as a
service—that isif awidget receivesan act i on() call then no other request-response cycle calls can occur.

The widget request-response cycle proceeds as follows:

1. update() —this method is called for al the widgets in the hierarchy. It allows widgets to read the data
from request and possibly store some conversation state or at least temporary information to render the
next view.

2. event () —thismethod is called on only one widget in the hierarchy. It alows to send events from the user
to widgets. The pat h is used to route the event to the correct widget and is empty when the event is
delivered to its endpoint. This method is optional in the widget request-response cycle.

3. render() —the way this method is called depends on how widgets are rendered (see Section 2.6.1,
“ViewModel and Rendering”). It may be called more than once (or not at all) during one request-response
cycle. Typically it is caled once for each widget that has a rendering template defined.

Aranea provides a base implementation of the W dget —or g. ar aneaf r anewor k. cor e. BaseW dget and a base
class for application development or g. ar aneaf r amewor k. cor e. BaseAppl i cat i onW dget . More on the last one
can be found in Section 2.7, “Application Widgets'.

2.6.1. ViewModel and Rendering

The default model of both widget and service rendering is that they render themselves. However, in most cases
the widget might want to delegate the rendering to some templating language. In some other cases the widget
might be rendered externally, without calling render () at al. Further on, we will describe these three cases in
detail.

Self-rendering
In the most basic situation the widget will just use cutput Data for rendering by casting it into e.g.
Ht t pQut put Data . In such a case the widget will just write out markup and return from the r ender ()
method optionally rendering children as well. The data for rendering will be drawn from the widget fields,
children and widget Envi r onnent .

Using templates for rendering

The most common case in application widgets is to delegate rendering to a templating language. A widget
may basically choose to render itself in arbitrary templating language as Aranea does not impose any
restrictions. In fact, one widget may be rendered with one templating language, while another one with a
completely different language. The template can gain access to the widget using the knowledge of the
widget's full name (which is gathered in the cut put Dat a scope). It is then possible to acquire the widget
View Model, which is a read-only representation of the widget state. For that the widget should implement
or g. ar aneaf ramewor k. Vi ewabl e :

public interface Viewabl e extends Serializable {
public Interface _getViewabl e();

interface Interface extends Serializable {
public Object getViewwodel () throws Exception;

}

Aranea 15

2.7. Application Widgets

View model is put together by the widget being rendered and should contain al the data necessary to
render the widget.

External rendering
Finally, a widget r ender () method may not be called altogether and a vi ewabl e widget may be rendered
externally using the available View Model. Thisis the case with some reusable widgets which are rendered
using e.g. JSP tags.

2.7. Application Widgets

This section explains how to program applications using widgets as the main abstraction.

A typical application widget class will extend or g. ar aneaf r anmewor k. ui | i b. cor e. BaseUl W dget . This widget
represents the usual custom application component that is rendered using Aranea custom JSP tags.
BaseUl W dget inherits most of its functionality from org. ar aneaf r amewor k. cor e. BaseAppl i cat i onW dget
the difference between the two being only that Baseu W dget assumes to be connected with a JSP page (or
another templating toolkit).

2.7.1. Children Management

BaseAppl i cati onW dget provides anumber of methods for managing child widgets:

public abstract class BaseApplicati onWdget ... {
public void addW dget (bj ect key, Wdget child);
public void renpbveW dget (Cbj ect key);
public void enabl eW dget (oj ect key);
public voi d di sabl eW dget (Cbj ect key);

}

As one can see, every added child has an identifier which should be unique among its siblings. This identifier is
used when rendering and sending events to the widget in question, to identify it among its peers. Together with
widget's parents identifiers this forms a unique identifier (scope) of widget in the component hierarchy.

Typically, children are added when created:

addW dget (" nmyChi | dW dget", new MyChi | dW dget ("String paraneter", 1));

An added child will be initialized, will receive updates and events and may be rendered. A widget can be active
only if added to a parent. It will live aslong as the parent, unless the parent explicitly removesit:

renoveW dget (" nmyChi | dW dget ") ;

Removing a child widget will destroy it and one should also dispose of any references that may be pointing to
it, to allow the child to be garbage collected.

A usua idiom isto save areference to the newly created and added child using a parent widget field:

16 Aranea

2.7.2. Event Listeners

public class MyWdget extends BaseU W dget {
private MyChil dW dget myChil dW dget;

protected void init() {
nyChi | dW dget = new MW dget ("String paraneter”, 1);
addW dget (" nmyChi | dW dget ", myChil dW dget);
}
}

This allows to call directly child widget methods and does not anyhow significantly increase memory usage, so
this technique may be used everywhere when needed.

Disabling a child (di sabl eW dget (" nyChi | dW dget ")) will stop it from receiving any events or rendering, but
will not destroy it. It can later be reenabled by calling enabl eW dget (" nyChi | dW dget ") .

2.7.2. Event Listeners

Registering event listeners allows widgets to subscribe to some specific user events (widget will receive only
events specialy sent to it). The distinction comes by the "event identifier" that is assigned to an event when
sending it. The events are handled by the classes extending or g. ar aneaf r anmewor k. cor e. Event Li st ener :

public interface EventlListener extends Serializable {
public void processEvent (Qhject eventld, InputData input) throws Exception;

}

The event listeners are registered as following:

addEvent Li st ener ("nyEvent", new EventListener() {
public void processEvent ((oject eventld, InputData input) throws Exception {
| og. debug(" Recei ved event: " + eventld);

}
}

Of course, the event listener does not have to be an anonymous class and can just as well be an inner or even a
usual public class. A standard base implementation or g. ar aneaf r amewor k. cor e. St andar dEvent Li st ener iS
provided that receives an optional st ri ng event parameter:

addEvent Li st ener ("nyEvent", new St andar dEvent Li stener () {
public void processEvent ((hject eventld, String eventParam |nputData input) throws Exception;
| og. debug(" Recei ved event " + eventld + " with paraneter " + paraneter);
}

}

Another useful way to process events is to register a proxy event listener
(or g. ar aneaf r amewor k. cor e. ProxyEvent Li st ener) that will proxy the event to amethod call, e.g.:

protected void init() {
addEvent Li st ener ("nyEvent", new ProxyEventListener(this));

}

/1 This nethod handl es the event that was registered in init().
public void handl eEvent MyEvent (Stri ng paraneter) {

| og. debug(" Recei ved event nyEvent with paranmeter " + paraneter);
}

Aranea 17

2.7.3. Action Listeners

The convention is that the proxy event listener trandates an event "<event>" into a method call
handl eEvent <event > making the first letter of <event> uppercase. The "String paraneter” is optiona and
can be omitted.

A useful feature is the method set G obal Event Li st ener (Event Li stener |istener) that allows to register a
listener that will receive all events sent to the widget. In fact Baseul W dget does that by default, and typically
you will use the individual event listeners only when you want to override this default behaviour. This alowsto
just define correct method names (handl eEvent <event >) and all events will be trandated to the calls to these
methods. Certainly this can aso be cancelled by calling cl ear d obal Event Li st ener (), or overridden by
adding your own global event listener.

2.7.3. Action Listeners

Registering action listeners allows widgets to subscribe to some specific user generated actions. Actions differ
from events in that widget lifecycle execution for whole component tree is not triggered upon request—actions
are just sent to the receiving widget's ActionListener, which is SOLELY responsible for generating the whole
response. For rich Ul components this allows a quick conversations with server, without requiring full form
submits and generating whole view.

Actions are handled by the classes extending or g. ar aneaf r anmewor k. cor e. Act i onLi st ener

public interface ActionListener extends Serializable {
public void processAction(Cbject actionld, |InputData input, QutputData output) throws Exception;
}

and their registration is analogous to event listeners:

addActi onLi stener ("actionld", new SonmeActionListener());

2.7.4. Environment

Every initialized widget has a reference to org. araneaf ranmewor k. Envi ronment available through the
get Envi ronnent () method. Environment allows to look up framework services (called contexts):

MessageCont ext nsgCt x = (MessageContext) get Environnent (). get Entry(MessageContext. cl ass);
msgCt x. showl nf oMessage("Hel o world!");

As one can see from the examples, contexts are looked up using their interface d ass object as key. All
framework servicesin Aranea are accessible only using the environment.

To find out more about Envi r onment see Section 2.3.2, “ Environment”

2.7.5. Overridable Methods

The main method that is typically overridden in a widget isinit (). As widget does not get an environment
beforeit is added and initialized it isimpossible to access framework services in the constructor, therefore most
of the initialization logic movesto the customi ni t () method. A dual overridable method isdest roy(), though
it isused much less.

In addition to event processing it is sometimes useful to do some kind of preprocessing. The
BaseAppl i cati onW dget has the following method that may be overridden to allow this processing:

18 Aranea

2.7.6. InputData and OuputData

protected voi d handl eUpdat e(l nput Data i nput) throws Exception {}

handl eUpdat e() is called before event listeners are notified and allows to read and save request data preparing
it for the event. More importantly, this method is called even when no event is sent to the current widget
allowing one to submit some data to any widget.

2.7.6. InputData and OuputData

In Aranea one usually does not need to handle request manually in custom application widgets. Even more, the
request is not accessible by default. The usual way to submit custom data to a widget and read it is using
Aranea Forms (see Chapter 5, Forms and Data Binding). However, when one needs to access the submitted
data, one can do that using the or g. ar aneaf r amewor k. | nput Dat a. This class can be used as follows:

String nyDatal =
(String) getlnputData().getScopedData().get("nyDatal");
String gl obal Subm ttedParaneter =
(String) getlnputData().getd obal Data().get("gl obal SubmittedParaneter");

get I nput Dat a() IS @ BaseAppl i cati onW dget method that returns the input data for the current request (one
can also usethei nput parameter given to event listener directly).

or g. ar aneaf r amewor k. Qut put Dat a iS accessible through the get Qut put Dat a() method of Basew dget or
directly asthe out put parameter passed to r ender () method.

To find out more about | nput Dat a and Qut put Dat a See Section 2.4, “InputData and OutputData’

2.7.7. View Model and Rendering

BaseAppl i cati onW dget also contains methods that facilitate transferring data to the presentation layer. Thisis
achieved using a View model—an abject containing a snapshot of the widget current state. The most typical
way to use the view model it to add datato it:

put Vi ewDat a("t oday", new Date());
put Vi ewDat a(" current User", userBean);

View dataistypically accessible in the presentation layer as some kind of avariable (e.g. a JSP EL variable) for
the current widget. If the data becomes outdated one can override it using put Vi ewDat a() call or remove it
using ther enoveVi ewbat a() call. In case one needs to put view data that would last one request only thereis an
alternative method:

put Vi ewDat aOnce(" now', new Date());

Finally widget instance is aso visible to the view, so one of the ways to make some data accessible is just to
define a JavaBean style getter:

Aranea 19

2.7.8. Putting It All Together

public Date get Now) ({
return new Date();

}

BaseUl W dget allows to render the current widget using a JSP page. To do that one needs to select a view as
follows:

set Vi ewSel ect or ("nmyW dget/forni');

This code makes the widget render itself using the JSP situated in WeB- | NF/ j sp/ nyW dget / f orm j sp (of course
the exact place is configurable). It is aso possible to render the widget using other template technologies with
the same view selector by overriding ther ender () method in the base project widget.

2.7.8. Putting It All Together

A typical application custom widget will ook like that:

public class TestWdget extends BaseU W dget {
private static final Logger |og = Logger.getLogger(TestWdget.cl ass);
private Data dat a;

protected void init() throws Exception {
//Sets the JSP for this widget to "/WEB-1NF/jsp/hone.jsp"
set Vi ewSel ect or ("hone");

/1 Get data fromthe business |ayer
data = ((TestService) |ookupService("testService")).getData("test paranmeter");

/I Make the data accessible to the JSP for rendering
put Vi ewDat a(" nyDat a", data);

}

/*
* Event |istener nethod that will process "test" event.
=
public void handl eEvent Test () throws Exception {
get MessageCt x() . showl nf oMessage(" Test event received successful ly");

}
}

2.8. Standard Contexts

Contexts are the Aranea way to access framework services. They can be looked up from the environment as
shown in Section 2.7.4, “Environment”. This section describes the most common Aranea contexts that should
be available in any typical configuration. All these contexts are also available directly through Baseu W dget
methods as shown further on.

2.8.1. MessageContext

or g. ar aneaf r amewor k. f r amewor k. MessageCont ext allows to show messages to the user. The messages can be
of several types, including predefined error and informative types. Typicaly messages will be shown

20 Aranea

2.8.1. MessageContext

somewhere in the application (exact way is application-specific). MessageCont ext is available through a
BaseUl W dget method get MessageCt x() and istypically used as follows:

get MessageCt x() . showl nf oMessage("Hello world!");
MessageCont ext divides messages by type (with predefined "info", "warning" and "error" types available) and
life span (usual or permanent). Usual messages are shown to user once and then cleared, while permanent
messages will be shown to user until explicitly cleared by the programmer:

Method Description

showMessage(String type, String nessage) Shows amessage message Of typet ype to the user.

showMessages(String type, Set <String> Shows messages of typet ype to the user.

nmessages)

show nf oMessage(String message) Shows an error message to the user.

hi del nf oMessage(String message) Hides an info message from user.

showWar ni ngMessage(Stri ng message) Shows a warning message to the user.

hi deWar ni ngMessage(String nessage) Hides a warning message from user.

showEr r or Message(Stri ng nessage) Shows an informative message to the user.

hi deEr r or Message(Stri ng message) Hides an error message from user.

cl ear Messages() Clears al non-permanent messages.

showPer manent Message(String type, String Shows apermanent message nessage oOf type type to

message) the user. The message will be shown until hidden
explicitly.

hi deMessage(String type, String nmessage); Removes a message nessage Of typet ype.

hi deMessages(String type, Set <String> Removes messages of typet ype.

nmessages) ;

hi dePer manent Message(String nessage) Clears the specific permanent message, under all

message types where it might be present.

cl ear Per manent Messages() Clears al of the permanent messages.
cl ear Al | Messages() Clears all messages (both permanent and usual).
Map<String, Collection> get Messages() Returns al present messages as a Map. Keys of the

Map are the different message types encountered so
far and under the keys are the messages in a
Collection.

Note

Messages should already be localized when passed to the MessageCont ext , it does not do any further
processing. Use Local i zati onCont ext described in Section 2.8.2, “LocalizationContext” to do the
actual localization of the added message.

Aranea 21

2.8.2. LocalizationContext

For information on implementation of the MessageCont ext See Section 3.5.8, “User Messages Filter”. For
standard JSP tag which renders MessageCont ext messages to response, see <ui:messages>.

2.8.2. LocalizationContext

org. ar aneaf r amewor k. f r amewor k. Local i zat i onCont ext allows to get and set current session locale, localize
strings and messages, and lookup resource bundles. The context is available through the Baseul W dget method

get L1onCt x() . Typically it isused asfollows:

String message = getL10nCtx().localize("nmy. message. key");

get MessageCt x() . showl nf oMessage(nessage) ;

Local i zat i onCont ext provides the following methods:

Method
Local e getLocal e()
set Local e(Local e | ocal e)

String localize(String key)

Description
Returns the current session locae.
Sets the current session locale.

Localizes a string returning one that corresponds to
the current locale.

Resour ceBundl e get Resour ceBundl e()

Resour ceBundl e get Resour ceBundl e(Local e

| ocal e)

String get Message(String code, Object[] args)

String get Message(String code,
String defaul t Message)

bj ect[] args,

voi d
addLocal eChangelLi st ener (Local eChangelLi st ener
|istener);

bool ean

Returns a resource bundle corresponding to the
current locale.

Returns a resource bundle corresponding to arbitrary
locale.

Localizes the code and uses it to format the message
with the passed arguments. The format of the
localized message should be acceptable by

j ava. t ext . MessageFor nat .

Localizes the code and uses it to format the message
with the passed arguments. The format of the
localized message should be acceptable by
j ava. t ext . MessageFor mat . If the localized message
cannot be resolved uses def aul t Message instead.

Registers a listener (Conponent) that will be notified
when locale is changed.

Unregisters listener (Conponent) so that it will not be

rermovelLocal eChangeli st ener (Local eChangelLi st enernotified of locale changes anymore. Returns whether

|'i stener)

the listener was found to be present and actually
removed.

For information on implementation of the Local i zati onContext See Section 8.1.2, “Spring Localization

Filter”.

22

Aranea

2.8.3. FlowContext

2.8.3. FlowContext

A common need in a web programming is to support navigation style known as flows—interactive stateful
processes that can navigate to each other passing arguments when needed. A more complex case is when we
also have flow nesting—a flow can call a subflow, and wait for it to finish, then reactivate again. In this case
we can have at any given moment a stack of flows, where the top one is active, and the next one will reactivate
when the top one finishes. It is also useful if nested flows can return resulting values when they finish.

Widget1

finish(result)

Flow 1
start(new Widget2(...)) replace(new Widget4(...))
Widget2 Widget4 Flow 2
Ty ﬂmSh(resu“) ..
Widget3 Flow 3

Figure 2.2. Flow diagram

or g. ar aneaf r amewor k. f r amewor k. FI owCont ext iS the Aranea context that provides support for nested flow
navigation. Aranea flow is a widget that is running in the flow container (using the FI owCont ext . start ()
method. Aranea abstraction for the nested state is that of a function—the nested flow takes in some parameters
and when finished may return some value or signal that no value can be returned. The context is available as
get Fl owCx x() method of BaseuUl W dget and allows to start flows, finish flows and return the resulting value.

To start a new flow one needs to create a widget as usual. The widget may take some parameters in the
constructor—they are considered to be the incoming parameters of the flow:

get Fl onCt x() . start (new Test Fl om new Long(5)));

This call will start a new nested flow for the widget Test FI ow making the current flow inactive. Test FI ow will
render and receive event until it explicitly returns control to the starting flow. Note that this code will start the
flow and then return the control, so it is important not to do anything in the same method after starting a new
flow.

To end the flow successfully one needs to do as follows:

get FIl owCt x(). fini sh(new Long(8));

This call will finish the current flow (in our case Test Fl ow) and return the control to the starting flow and its
widget.

Aranea 23

2.8.4. PopupWindowContext

Often one needs to handle the return from the flow, processing the returned result. This corresponds to our
abstraction of a method, however since Java does not support continuations we chose to alow the caller to
register a handler when starting the flow by passing aFl owCont ext . Handl er :

get Fl onCt x() . start (new Test Fl om new Long(5)),
new Fl owCont ext . Handl er () {
public void onFini sh(Object result) {
get MessageCt x() . showl nf oMessage(" Test Fl ow returned value " + result);

}
public void onCancel () {
//1gnore cancel |l ed fl ow

}
1)

A less common but nevertheless useful feature is to configure the starting flow after it has been initiaized. For
that the caller needs to pass aFl owCont ext . Conf i gur at or :

get Fl owCt x() . start (new Test Fl owm{ new Long(5)),
new Fl owCont ext. Configurator() ({
public void configure(Conponent conp) {
((Test Fl ow) conp). set Strat egy(Test Fl ow. ATTACK) ;

}
}, null);

Fl owCont ext also allows to replace the current flow instead of deactivating it by using the r epl ace() method
and to cancel the current flow by using the cancel () method.

Transitions between the flows are performed by FI owCont ext . Transi ti onHandl er S.

interface TransitionHandl er extends Serializable {

/**

* @aram event Type Fl owCont ext. START .. Fl owCont ext. RESET
* @aram activeFl ow active flow at the nonent of transition request
* @aramtransition Serializable closure that needs to be executed for transition to happen
*/
voi d doTransition(int event Type, Wdget activeFlow, Cosure transition);

}

After initialization, each flow may set the Transi ti onHandl er which will handle navigation events performed
while flow which set the Transi ti onHandl er is active. This can be used to customize navigation logic—i.e.
ask for confirmations when navigating away from flow containing unsaved data, restore window scroll position
when returning to caller flow or checking for privileges before starting the next flow.

For standard implementation, please see Section 3.5.18, “Root Flow Container”

2.8.4. PopupWindowContext

Popup windows in Aranea are separate threads that are started using
or g. ar aneaf r amewor k. ht t p. PopupW ndowCont ext . Popups can be used, for example, to open new widgets or
to upload files (using or g. ar aneaf r amewor k. ht t p. ser vi ce. Fi | eDownl oader Ser vi ce). TO open a hew widget
in a popup, the widget must handle the entire page, and its subwidgets may handle certain specific parts of a
page. Thisis similar to how aroot widget handles the components in the main thread.

24 Aranea

2.8.4. PopupWindowContext

One can access the PopupW ndowCont ext by getting it from the Envi ronnent . If it is accessed from a widget
that extends BaseUl W dget , the get PopupCt x() method can be used.

Here is an example on how to the server enables the user to download afile:

PopupW ndowCont ext popupCont ext = (PopupW ndowCont ext) get Environnent (). get Entry(PopupW ndowCont ext .
popupCont ext . open(new Fi | eDownl oader Servi ce(sel ectedFile), new PopupW ndowProperties(), null);

In the example above, the first parameter is the service that downloads the file to the user's computer, and the

second one is the popup window properties. Sometimes one may want to also specify the widget that caused the

popup to open. Therefore, the last parameter in the example is the opener, which usualy is nul I, but may be

provided as this (the caler widget). (The popup widget can access the opener by

PopupW ndowCont ext . get Qpener ())

The following is an example from Aranea sample application (Sanpl ePopupW dget) on how to open a popup
widget (from awidget that extends BaseUl W dget):

get PopupCt x() . open(
new Logi nAndMenuSel ect Message(" Denos. Si npl e. Si npl e_For ni'),
new PopupW ndowProperties(), this);

Here it must send a Message to the components that starts new widgets to produce the desired effect. The
Logi nAndMenuSel ect Message iSaSeri esMessage that first uses the flow context from the child environment of
the login widget to start a new root context. Then the menu select widget searches the menu widget to select the
given menu item. Below are the codes for messages.

The code for the Logi nAndMenuSel ect Message:

public class Logi nAndMenuSel ect Message extends Seri esMessage {
publ i c Logi nAndMenuSel ect Message(String nmenuPat h) {
super (new Message[] {

new Logi nMessage(),
new MenuSel ect Message(menuPat h) });

The code for the Logi nMessage:

public class Logi nMessage extends Broadcast Message {
protected void execut e(Conmponent conponent) throws Exception {
i f (conponent instanceof Logi nWdget) ({
Logi nW dget | ogi nW dget = (Logi nWdget) conponent;
Envi ronnent chil dEnv = | ogi nW dget . get Chi | dEnvi ronnent () ;

FI onCont ext flow = (Fl owContext) chil dEnv. get Entry(Fl owCont ext. cl ass);
fl ow. repl ace(new Root Wdget (), null);

}
}

The code for the MenuSel ect Message:

public class MenuSel ect Message extends Broadcast Message {
private String nmenuPat h;

publ i c MenuSel ect Message(String nmenuPat h) {

Aranea 25

2.8.5. OverlayContext

t hi s. nenuPat h = nenuPat h;

}

protected void execut e(Conponent conponent) throws Exception {

i f (conponent instanceof MenuW dget) {
MenuW dget w = (MenuW dget) conponent;
w. sel ect Menul t en{ menuPat h) ;

}
}
}
Method Description
String open(Message start Message, Uses a message that opens a widget inside a new
PopupW ndowPr operti es properties, W dget popup.
opener)
String open(Servi ce service, Usesaservicethat servesthe datafor anew popup.
PopupW ndowPr operti es properties, W dget
opener)
String openhbunt ed(Stri ng url, Opensthe mount URL in a popup.

PopupW ndowPr operti es properties)

open(String url, PopupW ndowPr operti es

properties)

bool ean cl ose(String id) throws Exception

W dget get Opener ()

Map get Popups()

Opens the given URL in a popup.

Closes the popup with given ID (the ID is returend
when the popup is created).

Provides the popup opener.

Returns a map with popups (the key is the ID of the
popup, and the vaue is an instance of
PopupSer vi cel nf o.

To enable popups at JSP layer, one must also register it inside the system form as the following code snippet

doesfromr oot . j sp of the Aranea Demo Application:

.;ui:body>

<div id="cont1">
<ui : syst enfFor m net hod="POST" >
<ui:register.../>
<ui : regi st er Popups/ >

Standard implementation of PopupW ndowCont ext isdescribed in Section 3.5.9, “Popup Windows Filter”.

2.8.5. OverlayContext

Supports running processes in "overlay" (in paralel Fl owCont ext of the same session thread). It is used to
allow construction of modal dialogs and modal processes. To start a process inside overlay, a widget calls one

of theget Overl ayCt x().start(...) methods.

26

Aranea

2.8.5. OverlayContext

The get Overl ayCt x() method is defined in Baseul W dget S0 all sub-classes should be able to access it. Others
can retrieve it from the Envi r onnent like following: (Overl ayCont ext)
get Envi ronnent (). get Entry(Over |l ayCont ext . cl ass) .

The first time the overlay mode is started, the start (...) must take a container (root) widget as its argument
because everything that happens in overlay mode, is happening like in a separate window. For example, the
code in Aranea Demo Application creates the overlay root widget and its content(s) like this:

getOverlayCt x().start(
new Over | ayRoot W dget (new Mbdal Di al ogDenmoW dget (true)));
Notice that the start(...) method is used to start two widgets. The custom-made Over | ayRoot W dget acts
like a root widget, which behind the scenes also specifies a flow container for the child widget (i.e.
Modal DialogDemoWidget). Here is the sample code for the OverlayRootWidget:

public class Overl ayRoot Wdget extends BaseU W dget {
private Wdget child;

public Overl ayRoot W dget (W dget child) {
this.child = child;
}

protected void init() throws Exception {
Assert.not Nul |l (child);
addW dget ("c", new Overl ayFl owCont ai ner(child));
set Vi ewSel ect or ("overl ayRoot ") ;

}

private class Overl ayFl owCont ai ner extends Excepti onHandl i ngFl owCont ai ner W dget {

publ i ¢ Overl ayFl owCont ai ner (W dget topW dget) {

super (t opW dget) ;
}
protected voi d render Excepti onHandl er (Qut put Dat a out put, Exception e) throws Exception {
if (ExceptionUtils. getRoot Cause(e) != null) {
put Vi ewDat aOnce("root St ackTrace", ExceptionUtils. getFull StackTrace(
ExceptionUti | s. get Root Cause(e)));
}

put Vi ewDat aOnce("ful | StackTrace", ExceptionUtils. getFull StackTrace(e));
ServletUil.include("/WEB-INF/jsp/nenuError.jsp", this, output);

}

Over | ayCont ext provides the repl ace*, start* and reset* methods that act analogously to Fl owCont ext
corresponding methods, but affect only overlayed process. Additionally, following methods are available:

Method Description

bool ean i sOver| ayActive() Returns whether some overlayed processis active.

set Over | ayOpti ons(Map opti ons) Sets the presentation options for overlayed processes.
Map get Overl ayOptions() Returns the map with current presentation options for

overlayed processes.

To make overlay possible on the client-side, one must register it inside the system form as the following code

Aranea 27

2.8.6. MenuContext

snippet does from root . j sp of the Aranea Demo Application. In addition, the modalbox.css file must also be
incorporated to enable the visua part of the overlay mode. In the example below, the file is explicitly defined
(it refers to the modalbox.css provided by Aranea), although the necessary styles are also included if there are
no attributes specified on the tag.

<head>
<UI cinmportStyles file="css/modal box/ nodal box. css" nedi a="screen"/ >
</ head'>' '
<ui : body>
<div id="cont1l">
<ui : syst enfFor m net hod=" POST" >

<ui:register.../>
<ui : regi sterCQOverl ay/ >

Notice the <ui : r egi st er Over | ay/ > tag!

Standard implementation of over | ayCont ext isdescribed in Section 3.5.19, “Overlay Container”.

2.8.6. MenuContext

Defines the standard methods for menu handlers (contexts). Most custom implementations can extend the
org. ar aneaf ramewor k. ui | i b. cor e. BaseMenuW dget and itSbui | dMenu() method.

Method Description

voi d sel ect Menulten(String menul t enPat h) Marks the menu item (identified by given path) as
active.

Menul t em get Menu() Provides access to the entire menu.

voi d set Menu(Menul t em menu) Specifies the menu to use.

All menu items are represented as a tree of or g. ar aneaf ramewor k. ui | i b. core. Menul t emobjects that have its
own label and aflow (awidget or aflow creator). An entire menu isaso a Menul t emand its menus are declared
with addSubMenul ten(Menul tem item). A Menultem may not have a flow, if it represents a sub menu. An
example menu might look like this:

Menul tem menu = new Menulten();

demoMenu = nenu. addMenul ten(nul |, new Menultem(" Deno_Menu", DenpW dget.cl ass));

denoMenu. addMenul t en{ new Menul t en(" Cont ext _Menus", DenpCont ext MenuW dget . cl ass));

denoMenu. addMenul t em(new Menul t en{ " Easy_AJAX Updat e_Regi ons", EasyAJAXUpdat eRegi onsW dget . cl ass));
denoMenu. addMenul t en{ new Menul t en(" Cooper ati ve_Fornt, Friendl yUpdat eDenmoW dget . cl ass));

To enable the menu widget, the root widget may initialize it. Then the menu can be accessed by view data. A
simplified example for JSP (without style information) is below:

<ui : wi dget Cont ext i d="nenu">
<c:forEach itens="${vi ewDat a. mrenu. subMenu}" var="itent >
<c:if test="${itemval ue.sel ected}">
<ui : event Li nkButton event | d="nenuSel ect" eventParan="${item val ue. |l abel}" | abel | d="${item val ue.
</c:if>

28 Aranea

2.8.7. ConfirmationContext

<c:if test="${not item val ue.sel ected}">
<ui : event Li nkButton event| d="nenuSel ect" eventParan="${item val ue. |l abel}" | abel | d="${item val ue.
</c:if>
</ c: forEach>
</ ui : wi dget Cont ext >

2.8.7. ConfirmationContext

Aranea standard component chain enriches Envi r onmment with a context called Conf i r mat i onCont ext . This can
be used for executing some code conditionally, depending on user actions. Context interface is simple and
consists of following methods:

public interface Confirmati onContext extends Serializable {
voi d confirnm(d osure onConfirnCl osure, String nessage);

String getConfirmati onMessage();

}
Therethe or g. apache. cormons. col | ecti ons. d osur e isasimple interface to encapsulate business logic:

public interface O osure {

public void execute(java.lang. Object input);

}
Thei nput paramisnul | for transitions handlers.

When confirmation is registered (with the confirn{...) method), rendering mechanism will present end-user
with the browser standard message box (on page load) and ask for confirmation of requested action. Depending
on users choice, action encapsulated in the onConf i r md osur e param either will get executed or not.

Combined with FI owCont ext . Transi ti onHandl er, confirmation could be asked whenever the user performs
navigation that would make active flow unreachable and flow contains data that has not yet been saved.

get Fl onCt x() . set Transi ti onHandl er (
new Cancel Confi rmi ngTransi ti onHandl er (
new Shoul dConfi rnOnUnsavedDat a(),
"Some data not saved yet. Continue anyway?"));

Here Cancel ConfirnmingTransitionHandl er (provided by Aranea) registers the confirmation whenever
Fl owCont ext . cancel () is called from active flow and or g. apache. commons. col | ecti ons. Predi cate (that is
used to check the custom condition before executing the event) Shoul dConf i r mnUnsavedDat a (nNot provided
by Aranea) evaluates to t r ue. Only after the user confirms the navigation, the event will allow flow transition
to be actually be performed.

ConfirmationContext and TransitionHandl ers together are a reliable and convenient way of preventing

end-users shooting themselves in the foot.

2.8.8. ManagedServiceContext, ThreadContext, and TopServiceContext

This section describes the contexts that are at the core of request handling.

or g. ar aneaf r amewor k. f r amewor k. ManagedSer vi ceCont ext represents a context that handles the requests of
different threads (windows) in one session. The basic idea is that it routes requests to the right services. Here's

Aranea 29

2.8.8. ManagedServiceContext, ThreadContext, and

an overview of the interface:

package org. ar aneaf r anewor k. f r amewor k;
public interface ManagedServi ceCont ext extends Serializable {
public Object getCurrentld();
public Service addServi ce(Cbject id, Service service);
public Service addServi ce(Cbject id, Service service, Long timeToLive);
public Service getService(Cbject id);

public void close(oject id);

or g. ar aneaf r amewor k. f r amewor k. Thr eadCont ext represents a context that makes popups possible. Without it
the user would have the same session in both windows, because Aranea application has a state. Thr eadCont ext ,
however, provides means to create a new (distinct) thread in the session. A proof that a ThreadCont ext iS
running in aweb application is the fact that you can find something like thisin the source code of a page:

<i nput nane="araThr eadServi cel d" type="hi dden" val ue="nai nThread"/ >

It means that the next request (submit) made will be bound to the mai nThr ead.

or g. ar aneaf r amewor k. f r amewor k. TopSer vi ceCont ext further specifiesthe ManagedSer vi ceCont ext by being
the top-most (and thus accessible by all users), though it works like Thr eadCont ext . The difference, however,
lies in the fact that TopServi ceCont ext iS not session based. Therefore, it would handle threads when, for
example, the user has not logged in. And one may seeit in their Aranea application page as following:

<i nput nane="araTopServi cel d* type="hi dden" val ue="application"/>

Thr eadCont ext and TopSer vi ceCont ext do not introduce new methods compared to ManagedSer vi ceCont ext .

30 Aranea

Chapter 3. Framework and Configuration

3.1. Overview

Aranea framework consists of a number of independent components each performing a single well-defined
function. Aranea uses Spring to wire these components into aworking framework. Though other 10C containers
and configuration frameworks would aso work we support Spring by default since it provides a very
comfortable and versatile syntax for configuring beans. The dispatcher servlet that uses Spring is called
org. ar aneaf ramewor k. i nt egr ati on. spri ng. AraneaSpri ngDi spat cher Servl et . Note that Aranea itself does
not depend on Spring except the classesin the or g. ar aneaf ramewor k. i nt egrat i on. spri ng package.

3.2. Application Configuration

3.2.1. web.xml

The simplest way to configure Aranea for a web application is to set the araneaApplicationStart init
parameter of the dispatcher servlet to the starting widget or flow of the application:

<?xm version="1.0" encodi ng="UTF- 8" ?>

<! DOCTYPE web-app PUBLI C
"-//Sun M crosystens, Inc.//DTD Wb Application 2.3//EN'
"http://java. sun. com dt d/ web-app_2_ 3.dtd">

<web- app>
<| i st ener >
<listener-class>
or g. ar aneaf ramewor k. ht t p. cor e. St andar dSessi onLi st ener
</listener-cl ass>
</listener>

<servl et >
<servl et - nanme>ar aneaSer vl et </ ser vl et - nanme>
<servl et -cl ass>
org. araneaf ramewor k. i nt egrati on. spri ng. AraneaSpri ngDi spat cher Ser vl et
</servl et-class>
<i ni t-paranp
<par am nane>ar aneaAppl i cati onSt art </ par am nane>
<par am val ue>exanpl e. St art W dget </ par am val ue>
</init-paranp
<l oad- on- st art up>1</ | oad-on-start up>
</servlet>

<servl et - mappi ng>
<ser vl et - nane>ar aneaSer vl et </ ser vl et - nane>
<url -pattern>/main/*</url -pattern>

</ servl et - mappi ng>
</ web- app>

This configuration will load Aranea using exanpl e. St art W dget as the application starting point.

Note

The servlet must be mapped to a all subpathes starting from some prefix (in our case / mai n/ *) so that
Aranea could do some path-dependent operations like extension file importing.

Note

3.2.2. aranea-conf.xml

org. ar aneaf ramewor k. ht t p. cor e. St andar dSessi onLi st ener iS required to allow Aranea to process
events like session invalidation.

3.2.2. aranea-conf.xml

Aranea can also be configured using a Spring configuration file located in /WEB- | NF/ ar anea- conf . xni .
Particularly it may be used to set the starting widget instead of the init-parameter:

<?xm version="1.0" encodi ng="UTF- 8" ?>
<! DOCTYPE beans PUBLIC "-//SPRI NG / DTD BEAN/ / EN"
"http://ww. springfranmework. org/dtd/spring-beans. dtd">

<beans>

<bean i d="araneaApplicationStart"
cl ass="exanpl e. Start W dget "
si ngl eton="f al se"/ >

</ beans>

This seems to be more verbose, but it also allows to configure the framework components as described in
Section 3.4, “Framework Configuration”.

3.2.3. aranea-conf.properties

Aranea also takes into account a property file located in / VEB- | NF/ ar anea- conf . properti es. The following

properties are recognized:

Property

| 10n. resour ceBundl e

| 10n. def aul t Local e

| 10n. encodi ng

jsp.path

Description

The base name of the resource bundle used for localization. This value isn't used
if default aranealocalizationFilter is overidden (eg. by the
SpringLocaIizationFiIterService)

Default value: or g. ar aneaf r amewor k. ht t p. support . Def aul t Resour ceBundl e

The default locale to be used in the application.

Default value: en

The default character encoding to be used throughout the application (e.g. for
request and response).

Default value: UTF- 8

The path from the webapp root to the directory that will act as JSP root. The JSPs
put there can be selected using widget view selectors (see Section 2.7.7, “View
Model and Rendering”).

Default value: / WVEB- I NF/ j sp

3.2.4. AraneaSpringDispatcherServlet

AraneaSpri ngDi spat cher Ser vl et provides a number of init-params that allow to further customize Aranea

configuration:

32

Aranea

3.2.5. Extending Dispatcher

init-param Description
ar aneaCust omConf XM The custom location of a Spring XML file used to configure Aranea.

Default value: / VEB- | NF/ ar anea- conf . xnd

ar aneaCust omConf Properti es The custom location of a property file used to configure Aranea.

Default value: / VEB- | NF/ ar anea- conf . properties

ar aneaAppl i cationStart The class name of an Aranea widget that will serve as the starting point
of an Aranea application. If omitted the Spring bean
araneaAppl i cationStart will be used.

ar aneaAppl i cat i onRoot The class name of an Spring bean describing an Aranea component that
will serve as the framework root. If omitted the Spring bean
araneaAppl i cati onRoot Will be used. Can be used to override the
default configuration atogether.

3.2.5. Extending Dispatcher

Currently, the most common way to put Aranea to work is to host it in a Servlet 2.3 or compatible container.

The most generic way to do that is to extend the
org. ar aneaf r amewor k. ht t p. cor e. BaseAr aneaDi spat cher Servl et and build the root component of type
org. ar aneaf ramewor k. ht t p. Ser vl et Ser vi ceAdapt er Conponent in the overrided method

bui | dRoot Conponent () :

package com f oobar. nyapp;

class MyServl et extends BaseAraneaDi spatcher Servl et {
prot ected Servl et Servi ceAdapt er Conponent bui | dRoot Conponent () {
St andar dSer vl et Ser vi ceAdapt er Conponent root = new Standar dServl et Servi ceAdapt er Conponent () ;

/I Configure the child conponents, service w dgets using setter injection
/...

return root;

}
}

One can then use such a servlet to configure Aranea in a web application as by replacing the standard
dispatcher servlet with the custom onein WEB- | NF/ web. xni .

3.2.6. ConfigurationContext

Aranea also provides a central way to configure some settings that affect the way some components work or
display data. These settings are stored in a wmap, where the key names are defined in the
org. araneaf ramewor k. ui | i b. Confi gur ati onCont ext interface.

The Confi gurati onCont ext is accessible from the Environnent or by the get Confi guration() method of
BaseUl W dget .

Every application may provide their own values for settings by implementing their version of the
Confi gurati onCont ext like following:

public class CustomConfiguration inplenments Configurati onContext {

Aranea 33

3.3. Framework Assembly

private Map configuration = new HashMap();

public CustonConfiguration() {
/1 Note that these constants are defined by the ConfigurationContext.
configuration. put (CUSTOM DATE FORMAT, "dd. MM yyyy|d. M yyyy");
configuration. put (CUSTOM TI ME_FORMAT, "“HH: nmi');
configuration. put (FULL_LI ST | TEMS_ON PAGE, new Long(20));

}

public Object getEntry(String entryNane) ({
return configuration.get(entryNane);

}

}

For more information on the settings that can be changed, please see the Confi gurati onCont ext interface in
the Aranea API [http://www.araneaframework.org/docs/1.1/javadoc/].

To make Aranea use the custom-created configuration, the class must be defined in ar anea- conf . xm file like
this:

<bean i d="araneaConfi guration"
cl ass="com conpany. conf . Cust omConfi gurati on" singleton="fal se" />
Note that it is defined as not being a singleton. This means that the configuration is created for every context
(user). Therefore, the settings can be further customized to be more user specific.

3.3. Framework Assembly

Aranea framework is made up of the same Components, Services and Widgets that are aso used to develop
Aranea applications. Each component performs a single well-defined function and depends on its parents only
through the Envi ronnent where component lives. The framework components mostly fall in one of the three
following categories:

Filter
Filter components are the simplest. The component (typically Service, see Section 2.5, “Services’)
contains a single unnamed child and implements the Filter pattern by either passing each call to the child or
not. However in addition it may enrich the child's environment with contexts and provide more
functionality like exception handling or synchronization. Typical examples of filters are localization filter
(provides a localization context), synchronization filter (synchronizes on action() method) and
transactional filter that does not let through double submits.

Router
Router typically contains many named children, and chooses only one to propagate the calls to according to
some | nput Data parameter. Router may have the children either statically preconfigured or created
dynamically when the request comes (the latter is the case with session service router). It may aso allow us
to add/remove children while the application is running. A typical application of arouter is to distinguish
among major application parts by some attribute (like component corresponding to a user session, or one of
the popup window of current user).

Container
Container can have one or many children, but it typically will do more with them than just passing the calls
to one of them. A typical example is the widget container service which trandates action() cals into
widget updat e()/ event () / render () cycle.

34 Aranea

http://www.araneaframework.org/docs/1.1/javadoc/

3.4. Framework Configuration

The frameworks itself is assembled using a hierarchy of components (this hierarchy is mostly flat, except for
the routers and application components). The hierarchy is arranged simply by containment, with each
component containing its chidren asfields asillustrated on Figure 3.1, “Framework assembly example”.

HequestT T Response
Servlet
Components
¥
(Sewlet service adaptor
Senices
Y
Session router
v -
[:-S@.rnchrnnizing filter Other session
components
¥
(HTTP fitter)
(Widgetadapter j
Widgets

¥
(Widget container)

v
(Flnw container)
'

[Applicatinn start :l
W,

Figure 3.1. Framework assembly example

Of course thisillustration is simplified, omitting most of the components described in Section 3.5, “Framework
Components’. If you want to find out more about the way framework is built and assembled, see the Aranea
Technical Paper [http://www.araneaframework.org/docs/aranea-techni cal -paper. pdf].

3.4. Framework Configuration

Aranea framework is assembled into a mostly-flat hierarchy using Spring beans. The default Aranea
configuration is loaded by the AraneaSpri ngbhi spat cher Servl et, but it can be overriden with the custom

Aranea 35

3.4. Framework Configuration

configuration in ar anea- conf . xn . The dispatcher servlet loads the configuration in such a way that same
named beans in ar anea- conf. xm override the ones specified in the default configuration. However, not all
beans can be safely or comfortably overriden, since many of them will also refer to their child beans.

It is always safe to override filters, as they should never refer directly to their children. To override afilter just
make a bean definition with the same name as in default configuration (filters and their default configuration
names among other components are described in Section 3.5, “Framework Components’). For instance to
override the default localization context with a custom-made one, one would need to add the following lines:

<bean cl ass="exanpl e. Local i zati onFi |l t er Servi ce"
i d="aranealLocal i zationFilter" singleton="fal se">
<property nane="| anguageNane" val ue="ee"/>

</ bean>

There is no good way in Spring to undefine a bean, so instead we use a"No OPeration" filter to nullify a filter
from the default configuration:

<bean cl ass="or g. araneaf ranewor k. f ramewor k. cor e. NopFi | t er W dget "
i d="araneaTransactionFilter" singleton="fal se"/>

Warning

Since filters can be both services and widgets, you have to be careful to use the appropriate one for the
current context. In current case you have override service filters with NopFi | t er Servi ce and widget
filters with NopFi | t er W dget .
There is no generic way to insert filtersinto an arbitrary place in the framework component hierarchy. However
there are several predefined places left for optional bean insertion at various levels of the hierarchy, which
should cover most of customization needs. To allow inserting more than one filter at a time afilter chain bean
is provided that allows putting together an arbitrary long chain of filters:

<bean i d="araneaCust onSessi onFi |l ters" singleton="fal se"
cl ass="org. araneaf ranewor k. framewor k. fi | ter. St andar dFi | t er Chai nSer vi ce" >
<property nanme="filterChain">
<list>
<ref bean="araneaSeri alizi ngAudit"/>
<ref bean="myCustonFilterl"/>
<ref bean="nmyCustonFilter2"/>
</list>
</ property>
</ bean>

Note

Use st andar dFi | t er Chai nServi ce for hosting service filters and St andar dFi | t er Chai nW dget for
hosting widget filters.

Follows a description of the insertion point beans and their scope:

Bean name Scope and Description

araneaCust omApplicationFilters
These filters are created only once and live as long as the application

does. They are not synchronized and should be use to add features
generic to the whole application, not specific users. The exceptions
thrown by this filters are intepreted as critical and are handled by the

36 Aranea

3.5. Framework Components

Bean name

ar aneaCust onSessionFilters

ar aneaCust onithreadFi l ters

araneaCustomW dgetFilters

Scope and Description

critical exception handler.

Examples: araneaFileUploadFilter, araneaStatisticFilter.

These filters are created for every HTTP user session and live aslong as
the session does. They are generally synchronized and should be used to
add features specific to the current user session.

Examples. araneal ocalizationFilter.

These filters are created for every user browser window and live as long
as the window does. They are synchronized and should be used to add
features specific to the individual browser window (e.g. most rendering
filterswill fall into this category).

Examples: araneaThreadCloningFilter .

These filters are created for every user browser window and live as long
as the window does. They are synchronized and should be used to add
features specific to the individual browser window. Unlike the rest of
the filters this can be widgets and thus can take advantage of the widget
update/event/process/render cycle.

Examples. aranealransactionFilter, araneaM essagingFilter.

3.5. Framework Components

Aranea configuration is determined by request-processing components that can be assembled in many different
ways. Following sections are a brief reference for pre-existing standard components, most of which are also
used in Aranea framework default configuration.

3.5.1. Localization Filter

Javaclass: | StandardLocal i zati onFil terService

Default configuration aranealocal i zati onFil ter

name:

Provides: Local i zati onCont ext

Dependson: | -

Provides localization services to children. See Section 2.8.2, “L ocalizationContext”.

Aranea

37

3.5.2. AJAX Update Regions Filter

I njectable properties Description

languageName A vaid 1SO Language Code. Sets Local e according to given language.

java.lang. String

resourceBundleName Name of the used resource bundle used to localize the application.

java.lang. String

locale Local e to use. Either that or languageName should be specified, but not
both.

java.util.Local e

3.5.2. AJAX Update Regions Filter

Javaclass. Standar dUpdat eRegi onFi | t er W dget

Default configuration | ar aneaUpdat eRegi onFi | t er
name:

Provides. ' Updat eRegi onCont ext

Dependson: | -

When framework receives an event(request) that has update region parameters defined, this filter is activated
and takes care that only the smallest renderable unit that defines named update region is actually rendered.
Generated response aso contains only the rendered content of particular component(s) that needed to be
rendered for updating the regions.

I njectable properties Description
characterEncoding The character encoding for responses served by this filter, default being
"UTF-8".

java.lang. String

Notes: In Aranea 1.1 this filter has changed from Service to Wdget. Also, the configuration parameter
exi sti ngRegi ons only existsin 1.0 branch (TODO: elaborate why? (imho it should remain anyway)).

3.5.3. Environment Configuration Filter

Javaclass. ' St andar dCont ext MapFi | t er W dget

Default configuration ar aneaEnvCont ext Fi | t er
name:

Provides: | -

Dependson: | -

Filter widget that enriches children environment with specified context entries.

38 Aranea

3.5.4. Critical Exception Handler

I njectable properties Description

contexts A map of contexts that will be added to environment. The keys can
contains strings of kind "package.ClassName.class’, which will use a

java.util. Map Class object of the specified classname as the context key. The context

value should be an object instance of the context interface. By
convention a context should be registered under akey that is an interface
it implements.

3.5.4. Critical Exception Handler

Javaclass. | StandardCritical ExceptionHandl i ngFilter Service

Default configuration araneaCriti cal Error Handl er
name:

Provides: | -

Dependson: | -

Catches the exceptions (if any) occuring while executing children methods; passes the exceptions on to
Ser vi ce that deals with exception handling (obtained from Except i onHandl er Fact or y).

I njectable properties Description

exceptionHandlerFactory A factory for creating exception handlers. An exception handler is a

service, which handles the user naotification and recovery.
Except i onHandl er Fact ory

3.5.5. File Uploading Filter

Javaclass: | st andar dFi | eUpl oadFi | t er Servi ce

Default configuration ar aneaFi | eUpl oadFi | t er
name:

Provides. | Fi | eUpl oadCont ext , Fi | eUpl oadl nput Ext ensi on

Dependson: | -

Enriches child environment with Fi | eUpl oadCont ext (which is just a marker interface). When incoming
request is multi-part request, children's | nput Dat a is extended with Fi | eUpl oadl nput Ext ensi on that allows
children easy access to uploaded files.

I njectable properties Description

multipartEncoding Character encoding that will be used to decode the
nul tipart/formdata encoded strings. The default encoding is

java.lang. String determined by Apache Commons Fi | eUpl oad class.

useRequestEncoding When set to "true” request character encoding will be used to parse the

Aranea 39

3.5.6. HTTP Response Headers Filter

I njectable properties Description
mul ti part/form dat a encoded strings.
bool ean
maximumCachedSize Maximum size of file that may be cached in memory.

java. | ang. | nt eger

maximumsSize Maximum size of file that may be uploaded to server.

java. | ang. Long

maximumRequestSize Maximum size of the request that server will parse to the end.

j ava. | ang. Long

tempDirectory Temporary directory to use when uploading files.

java. lang. String

3.5.6. HTTP Response Headers Filter

Javaclass: | Standar dHt t pResponseFi | t er Servi ce

Default configuration ar aneaResponseHeader Fi | t er
name:

Provides: | -

Dependson: | -

Filter that sets necessay headers of the response.

Injectable properties Description

cacheable Whether the response is cacheable or not. By default it is not cacheable.

bool ean

contentType Sets the content type of the response. Default is "text/html;
charset=UTF-8".

java.lang. String

cookies Constructs cookies from the <cookieName, cookieVaue> pairs in the

map and sets them in response.
java. util.Mp

headers Sets the headers of the response from the map of <headerName,

headerVaue>.
java. util.Mp

cacheHoldingTime Sets the cache-control's max-age parameter, value is in milliseconds.

Response must be cacheable for thisto have any effect.
| ong

40 Aranea

3.5.8. User Messages Filter

3.5.7. JSP Configuration Filter

Java class:

Default configuration
name:

Provides:

Depends on:

St andar dJspFi |l ter Servi ce

araneaJspConfi gFilter

JspCont ext

Local i zat i onCont ext

Provides JSP specific information to children.

I njectable properties
submitCharset
java.lang. String
jspPath

java.lang. String
jSpExtension

java.lang. String

Description

Sets the "accept-charset” attribute value that will be used for rendering
Aranea JSP specific systemForm.

Path where widgets rendering themselves with jsp templates should
search for them. Default is"/WEB-INF/jsp".

File name extension jsp templates are assumed to have. Default is".jsp".

3.5.8. User Messages Filter

Java class:

Default configuration
name;

St andar dMessagi ngFi | t er W dget

ar aneaMessagi ngFi l ter

Provides:

MessageCont ext

Dependson:

See Section 2.8.1, “MessageContext” .

3.5.9. Popup Windows Filter

Java class:

Default configuration
name:

Provides:

Dependson:

St andar dPopupFi | t er W dget

ar aneaPopupFi | ter

PopupW ndowCont ext

Thr eadCont ext , TopSer vi ceCont ext , Transact i onCont ext

Provides methods for opening new session-threads and renders these in different browser windows at

Aranea

41

3.5.10. Component Serialization Auditing Filter

client-side.
I njectable properties Description
threadServiceFactory Factory that should build the component chain according to effective

Aranea configuration, beginning with sessionthread-level filters.
Servi ceFactory

3.5.10. Component Serialization Auditing Filter

Javaclass: | StandardSerial i zi ngAudi t Fil ter Servi ce

Default configuration | ar aneaSeri al i zi ngAudi t (not included in default filter chain)
name:

Provides: | -

Dependson: | -

Always serializes the the session during the regquest routing. This filter helps to be aware of serializing issues
during development as when the session does not seriaize, exception is aways thrown. In production
configuration, this filter should never be enabled, thusit is disabled by default.

Injectable properties Description

testX ml SessionPath The path where the serialized sessions should be logged in XML format.
If not specified, serialization tests are performed in-memory.
java.lang. String

3.5.11. Statistics Logging Filter

Javaclass: | StandardStatisticFilterService

Default configuration araneaStati sticFilter
name:

Provides: | -

Dependson: | -

Filter that logs the time it takes for the child service to serve the request (complete its action method).

I njectable properties Description

message The prefix of the statistics log statement.

java.lang. String

3.5.12. Browser Window Cloning Filter

42 Aranea

3.5.13. Multi-submit Protection Filter

Javaclass. | st andar dThr eadd oni ngFi | t er Servi ce

Default configuration | ar aneaThr eadd oni ngFi | t er
name

Provides: Threadd oni ngCont ext

Dependson: ThreadCont ext , TopSer vi ceCont ext

Implementation of a service that clones currently running session thread upon request and sends a response that
redirects to cloned session thread. It can be used to support "open link in new window" feature in browsers.
Cloning is generic and resource demanding, as whole tree of session thread components is recreated. Custom
applications may find that they can implement some application specific cloning strategy that demands less
memory and processing power.

I njectable properties Description

timeToLive Inactivity time for cloned thread after which thread router may kill the
thread service. Thisis specified in milliseconds. If unset, threads created

java.lang. Long by cloning service usualy live until HTTP session in which they were

spawned expires.

3.5.13. Multi-submit Protection Filter

Javaclass: | StandardTransacti onFi |l t er W dget

Default configuration araneaTransacti onFi | ter
name:

Provides: Transacti onCont ext

Dependson: Syst enfor nCont ext

TransactionContext implementation that filters routing of duplicate requests. The detection of duplicate
requests is achieved through defining new transaction ID in each response and checking that next request
submits the consistent transaction ID. Missing (null) transaction ID is aways considered inconsistent. For
purposes of asynchronous requests, over ri de transaction ID is always considered consistent.

Transactions work in Aranea application by default. You may notice it in a web page as a hidden field, for
example:

<i nput nanme="araTransactionld" type="hidden" val ue="-8629560801569274688"/ >

The value is random, and a Tr ansact i onCont ext checks every request whether it is the same as expected (it
remembers the previous transacti onl d value it gave to the page). If it is not the same, the request will be
ignored. Therefore, one may notice when transactions are inconsistent: the pages won't update itself (on first
click).

Sometimes, however, a transactionld may become inconsistent (for various reasons, such as due to a
background request). Then the solution would be to change the transactionld value to "override" (for
example, by using JavaScript). (In the next response, the t ransact i onl d will still have a new random numeric
value.)

Aranea 43

3.5.14. Class Reloading Filter

Request parameter name Description

Transaction id must be equal to the last one generated for the transaction
to be consistent.

transactionld

3.5.14. Class Reloading Filter

Javaclass. St andar dd assRel oadi ngFi | t er W dget

Default configuration -
name:

Provides: | -

Dependson: -

This filter allows to reload the underlying object classes dynamically. This means that you can just change the
widget source file, compile it (e.g. with IDE built-in compiler) and it will be reloaded seamlessly in Aranea.
This will apply only to Aranea widget classes under this filter and the classes they contain (but not e.g. Spring
beans). Thisfilter must be registered instead of the ar aneaAppl i cati onStart to function.

Warning

None of the classes under this filter may be configured by Spring or anything else using its own
classloader!

I njectable properties Description

childClass The full names of the child widget class.

java.lang. String

3.5.15. Client State Serialization Filter

Javaclass. | Standardd i ent St at eFi | t er W dget

Default configuration aranead i ent StateFi | ter (notincluded in default filter chain)
name:

Provides: | -

Dependson: Syst enFor nCont ext

This filter will seridize the state of underlying widgets onto client-side. This significantly decreases the
server-side session size and thus memory use. It is especially useful in intranet applications with lots of spare
bandwidth. The filter should be positioned as the first custom widget filter for most gain.

Note

44 Aranea

3.5.16. Extension File Import Filter

The filter will protect against tampering with the serialized state and will throw an exception if
modified state is submitted from the client-side. As a bonus this filter will also allow a user to make up
to 10 steps back and forward in browser history, restoring the correct state.

I njectable properties Description

compress If true the serialized state will also be GZIPed, trading processor time
for bandwidth. False by default.

bool ean

3.5.16. Extension File Import Filter

Javaclass. | StandardFil el mport FilterService

Default configuration araneaFi | el nportFil ter
name:

Provides: | -

Dependson: | -

This filter is responsible for providing a virtual file system so that extensions could make use of the resources
included in .JAR files. See Section 3.6.1, “Extension Resources”

3.5.17. Bookmarking/URL Mounting Filter

Javaclass: | St andar dvbunt i ngFi | t er Servi ce

Default configuration ar aneaMbunti ngFil ter
name:

Provides: Munt Cont ext

Dependson: | -

Implementation of a service that allows to "mount” flow components to a publicly accessible URL. It is used
when it is needed that some (read-only) parts of application are accessible to users who are not able to enter the

session-based conversation with application.

I njectable properties Description
Keys in the map are URL prefixes under which the flow component is
mapped. Values are or g. ar aneaf r amewor k. Message factories of type
java.util.Map<String, Mbunt Cont ext . MessageFact or y—producing messages that generate
Mount Cont ext . MessageFactory> component hierarchy for serving wanted content.

mounts

3.5.18. Root Flow Container

Javaclass: | Root FI owCont ai ner W dget

Aranea 45

3.5.19. Overlay Container

Default configuration ar aneaRoot FI owCont ai ner
name:

Provides: | Root FI owCont ext , Fl owCont ext

Dependson: -

See Section 2.8.3, “FowContext” for purpose and philosophy behind FI owCont ext . Root FI owCont ext iS same
as Fl owCont ext , but allows acces to the root flow container at any time. Remember that Root FI owCont ext IS
the topmost flow context that everything else depends on. One can find it from the Envi r onnent .

Tip

Flow containers are not generaly a part of the framework and can be used in your application as
needed. In a typica Aranea application the menu will inherit ~ from
Except i onHandl i ngFl owCont ai ner W dget that besides providing the flow container functionality also
allows to handle flow exceptions inside the container, preserving the menus and current state. See
business application tutorial for more information.

I njectable properties Description

top First widget to be started in this container.

or g. ar aneaf ramewor k. W dget

3.5.19. Overlay Container

Javaclass. StandardOver| ayCont ai ner W dget

Default configuration ar aneaOver| ayCont ai ner
name:

Provides: | overl ayCont ext

Dependson: | -

Supports running processes in "overlay" layer (in parallel FlowContext of the same session thread). Allows
construction of modal dialogs and modal processes.

Injectable properties Description

main Widget corresponding to main process running outside overlay.
W dget

overlay Component responsible for running processes in overlay layer.

Fl owCont ext W dget

3.5.20. System Form Field Storage Filter

46 Aranea

3.5.21. Window Scroll Position Filter

Javaclass. | St andar dSyst enfor nFi | t er Servi ce

Default configuration ar aneaSyst enfor nFi | t er
name:

Provides. | syst enfor nCont ext (for adding/examining managed form fields).

Dependson: TopServi ceCont ext , Thr eadCont ext

Stores system form fields that will be written out when <ui : syst enFor e tag is used. Form fields that indicate
service levels (t opSer vi cel d and t hr eadSer vi cel d) are always automatically added to every response by this
implementation.

This filter does not have any specia injectable properties (except the wusua chil dService).
Syst enFor nCont ext interface is accessible from the Envi ronment when this filter is present in the hierarchy
and provides addFi el d(String key, String value); and Map get Fi el ds(); methods for managing special
form fields. See also information about systemForm tag.

3.5.21. Window Scroll Position Filter

Javaclass. | st andar dW ndowScr ol | Posi ti onFi | t er W dget

Default configuration araneaScrol lingFilter
name:

Provides: ' WindowScrollPositionContext

Dependson: -

Thisfilter provides away to preserve the scroll position of the window so that the user would not have to scroll
back to the same place on the page every time they click on something. With every submit, the page sends its
scroll coordinates so that the next response would know where to scroll the page. All-in-all, you can consider it
anice feature to have.

To enable this feature, one must defineit in ar anea- conf . xmi :

<bean i d="araneaCust omN dget Filters" singl eton="fal se"
cl ass="org. araneaf ranewor k. franewor k. fi |l t er. St andar dFi | t er Chai nW dget " >
<property nane="filterChai n">
<list>
<ref bean="araneaScrollingFilter"/>
</list>
</ property>
</ bean>

Note the ar aneaScr ol | i ngFi | t er, which you do not have to define yourself (just referenceit).

In addition, this feature must be registered in a (root) JSP page:

.;Qi:body>

<div id="cont1">
<ui : syst enFor m net hod=" PCOST" >
<ui : regi sterScrol | Handl er/ >
<ui : regi st er Popups/ >
<ui : regi sterQverl ay/ >

Aranea 47

3.6. Other

Notice the <ui : regi st er Scrol | Handl er/ > tag!

3.6. Other

3.6.1. Extension Resources

External resources, such as javascript, style and image files of Aranea components are managed through
different configuration files. The resources are listed in XML files and can be accessed through
St andar dFi | el mport Fi | t er Servi ce. This approach makes it possible to package all the resources into the
araneaj ar archives and no manual copying of necessary filesto fixed locations is needed.

Aranea comes bundled with aar anea- r esour ces. xn file which defines al the external resources.

<?xm version="1.0" encodi ng="UTF- 8" ?>
<resour ces>
<files content-type="text/css" group="defaultStyles">
<file path="styl es/_styl es_gl obal .css"/>

<file path="styles/ styles screen.css"/>
</[files>

<files content-type="i mage/gif">
<file path="gfx/i01.gif"/>

<file path="gfx/i02.gif"/>
</[files>

</ resources>

All the files listed in the configuration files are allowed to be loaded through the Fi | el nport Fi | t er . Some are
grouped by name to provide an easy access for reading files in bulk.

To override specific files in the configuration file, the new file should be placed in a subdirectory overri de.
When loading afile, Aranea first trys to open the file in the overri de directory and on failure trys to read the
file without the prefix directory.

To add files to the defined list, construct a configuration file and name it ar anea-resources. xni . All such
configuration files from the classpath are parsed for the resources. If two file groups are defined with the same
name, the group is formed by taking a union from the filesin the group.

Groupnames def aul t St yl es and def aul t Scri pt s are predefined groups for managing the necessary core files
that must be included for Araneato work correctly.

For custom loading a resource, the URL to use is /fileinporter/filepath. The fileinporter is
St andar dFi | el nport Fi | t er Servi ce. FI LE_| MPORTER_NAME and fi | epat h is the path that is defined for the file
in the resource configuration file.

Extensions of the framework provide their own configuration files for configuring their resources. New
extensions cannot be defined right now on the fly.

48 Aranea

Chapter 4. JSP and Custom Tags

4.1. Aranea Standard Tag Library

Aranea supports JSP rendering by providing a JSP 1.2 custom tag library that tries to abstract away from
HTML and allow programming in terms of widgets, layouts and logical GUI elements. The tag library URI is
"http://araneaframework.org/tag-library/standard” and it is contained in ar anea- present ati on. j ar, SO putting
this JAR in the classpath (e.g. WVEB- I NF/ 1i b) is enough to put it to work. Library tags support JSP Expression
Language that isused in JSTL 1.0.

Aranea examples use JSP XML form and in such form importing the library should look like this:

<?xm version="1.0" encodi ng="UTF- 8" ?>
<jsp:root xmns:jsp="http://java.sun.com JSP/ Page"
xm ns: ui ="http://araneaf ranewor k. org/tag-1ibrary/standard" version="1.2">

</j sp:root>

In ausual JSPfileit should look like this:

<U@taglib uri="http://araneaframework.org/tag-1ibrary/standard" prefix="ui" %

The suggested prefix for the tag library is"ui”.

Thereis otherwise identical taglib that has <r t expr val ue> set to t r ue for each tag attribute. URI for that taglib
iS http://araneaframework. org/tag-library/standard_rt. When using JSP version 2.0 or higher, this
taglib should be used, otherwise EL in attributesis rejected by containers.

4.2. System Tags

Aranea JSP rendering should start from some root JSP (root template) that will include the root widget(s)
(which typically are some kind of flowcontainers or menus). To support widgets and other custom tags one
needs to make sure that the template |ooks something like this:

<?xm version="1.0" encodi ng="UTF- 8" ?>
<j sp: root

xm ns:jsp="http://]ava. sun. coml JSP/ Page"

xm ns:ui ="http://araneaf ranewor k. org/tag-1ibrary/standard” version="1.2">

<ui : W dget Cont ext >

<htm >
<head>
<title>Aranea Tenpl ate Application</title>

<ui :i nmport Scri pts/>
<ui :inmportStyl es/ >

</ head>
<ui : body>
<ui : syst emFor m net hod=" POST" >
<h1>Aranea Application</hl>

<ui : messages/ >

<ui : wi dget | ncl ude id="root"/>
</ ui : syst entor n>

4.2.1. <ui:importScripts>

</ ui : body>
</htm >
</ ui : wi dget Cont ext >
</j sp:root>

Next are described all these tags except <ui:widgetlnclude>, which is described in the following section.

4.2.1. <ui:importScripts>

Aranea comes bundled with different external resources: javascript libraries, stylesheets and images. To
automate the process of loading the javascript files without the manual copying of them to specific webapp
locations, a specia filter isused. Thefilter is able to read files from araneaj ar files.

<ui:importScripts> depends on the filter SandardServietFilelmportFilter Service being set. The filter provides
the functionality of reading files from the jars on the server.

If no attributes specified, the default group of javascript files are loaded.

Attributes

Attribute Required Description

file no WritesHTML <scri pt > tag to load the specific file.

group no Writes HTML <script > tag to load a group of javascript
files.

Examples

<?xm version="1.0" encodi ng="UTF- 8" ?>
<ui:inportScripts/> <!-- inports files from'defaultScripts' group -->
<ui :inmportScripts group="debugScripts"/> <!-- inports additional debug scripts (js |ogger) |-->

4.2.2. <ui:importStyles>

Aranea comes bundled with CSS files to provide custom look for different predefined components (the
template app, calendar, htmleditor, etc.). Just as with javascript, to use them one would have to extract them
from the jars and use them just like any other css file would be used. To automate this process with aranea css
files one can use the <ui:importStyles> tag to include the cssfiles automatically.

<ui:importStyles> depends on the filter SandardServietFilelmportFilter Service being set. The filter provides
the functionality of reading files from the jars on the server.

If no are attributes specified, the default group of cssfiles are loaded.

Attributes

Attribute Required Description

file no Writes out the HTML's CSS handling 1ink to load the
specificfile.

group no Writes out the HTML's CSS handling I i nk to load the group
of files.

50 Aranea

4.2.3. <ui:body>

Attribute Required Description
media no Mediatype to which imported styles are applied.

4.2.3. <ui:body>

This tag will render an HTML <body> tag with Aranea JSP specific onload and onunload events attached. It
usually writes out some other page initialization scripts too, depending on the circumstances. It must be present
in a JSP template, otherwise most client-side functionality will cease to function.

Attributes

Attribute Required Description

onload no Overwrite the standard Aranea JSP HTML body onload
event. Use with caution.

onunload no Overwrite the standard Aranea JSP HTML body onload
event. Use with caution.

id no HTML BODY id.

dir no HTML BODY dir attribute.

lang no HTML BODY lang attribute.

title no HTML BODY title attribute.

4.2.4. <ui:systemForm>

This tag will render an HTML <form> tag along with some Aranea-specific hidden fields. When making
custom web applications it is strongly suggested to have only one system form in the template and have it
submit using POST. This will ensure that no matter what user does no data is ever lost. However Aranea does
not impose this idiom and one may just as well submit using GET, define system forms in widgets and use
usual HTML links instead of JavaScript. See Section 4.2, “ System Tags’ for usage example and Section 3.5.20,
“System Form Field Storage Filter” about afilter that provides some essential hidden fields.

Attributes
Attribute Required Description
id no The HTML "id" of the <forne tag that may be used in
JavaScript. It will be autogenerated if omitted.
method yes HTTP submit method, either GET or POsST.
enctype no Same as HTML <f or ne attribute enct ype, defines how form
data is encoded.
Variables

Aranea 51

4.2.5. <ui:messages>

Variable Description Type

systemFormid SystemForm FORM id. String

4.2.5. <ui:messages>

This tag will render messages of given type if they are present in current MessageCont ext . When type is not
specified, all types of messages are rendered. As MessageCont ext is typically used for error messages, it is
common to render these messages somewhere near top of the page, where they can easily be spotted.

Attributes

Attribute Required Description

type no Message type.

styleClass no CSS class applied to rendered messages, default being
aranea- nessages.

divid no Sets the id of the HTML <div> inside which the messages
arerendered. If left unspecified, noid is assigned.

style no CSS inline style applied to rendered messages. Use
styl ed ass instead.

Examples

<?xm version="1.0" encodi ng="UTF- 8" ?>

<ui : nessages type="info"/>
<ui : messages type="error" styleC ass="custom error-nessage-cl ass"/>
<ui : nessages/ >

4.3. Basic Tags

4.3.1. <ui:attribute>

Defines an attribute of the containing element, where possible. See also Section 4.3.3, “<ui:element>". Most
form element tags accept attributes set by this tag too, see Section 4.3.1.1, “Examples’.

Attribute Required Description
name yes Attribute name.
value yes Attribute value.
Examples

52 Aranea

4.3.2. <ui:elementContent>

<?xm version="1.0" encodi ng="UTF- 8" ?>

<I-- set the onkeypress attribute for HTM. input produced by ui:textlnput-->
<ui : t ext | nput >

<ui:attribute nanme="onkeypress" val ue="upper Case(this);"/>
</ ui : text|nput>

4.3.2. <ui:elementContent>

Definesan HTML element content, meaning the body of the HTML element where text and other tags go.

4.3.3. <ui:element>

Defines HTML node, can be used together with <ui : at t ri but e> and <ui : el ement Cont ent > to define a full
HTML node.

Attribute Required Description
name no HTML element name.
Examples

<?xm version="1.0" encodi ng="UTF- 8" ?>
<ui : el enent nane="span" >

<ui:attribute nane="cl ass" val ue="fancy"/>

<ui : el enent Cont ent >Contents of fancy span. </ui: el enent Cont ent >
</ ui : el ement >

4.3.4. <ui:keyboardHandler>

Registers a simple javascript keyboard handler.

Attribute Required Description

scope no When a keyboard event happens, it is usually associated with
a certain form element / form / widget / etc. The object with
which an event is associated is identified by a hierarchical id
(eg. there may be widget 'somelist’, containing form
'somelist.form’, containing textbox ‘'somelist.form.textbox'.
The scope is a prefix of that id that must match in order for
the handler to be triggered. For example, the handler with
scope="somelist.form.textbox' will be triggered only when the
event in the textbox occurs, but the handler with
scope="somelist" will be triggered when any event in any of
the elements inside any of the forms of "somelist" occurs. |.e.
for any element with ID beginning with 'somelist. When
scope is not specified, a global handler is registered, that
reacts to an event in any form/widget.

handler yes A javascript handler function that takes two parameters - the

Aranea 53

4.3.5. <ui:eventKeyboardHandler>

Attribute Required Description
event object and the element id for which the event was fired.
Example:

function(event, elenmentld) { alert(elermentlid); }

keyCode no Keycode to which the event must be triggered. 13 means
enter. Either keyCode or key must be specified, but not both.

key no Key, to which the event must be triggered. Key is specified as
a certain 'alias. The alias may be an ASCII character or a
digit (this will denote the corresponding key on a US
keyboard), a space (' '), or one of the following: 'return’,
‘escape, 'backspace, 'tab’, 'shift’, ‘control’, 'space, 'f1', 'f2 ...,
f12'.

keyCombo no Key combination, which should trigger the event. It can is
specified with key aliases separated with "+" signs. For
example "ctri+alt+f1", "alt+r" etc.

Examples

<!-- dobally-scoped F2 |istener --
<ui : keyboar dHandl er
scope=""
key="f2

handl er="function() { alert('You pressed F2. Do it again if you dare!l');}"/>

4.3.5. <ui:eventKeyboardHandler>

Registers a'server-side' keyboard handler that sends an event to the specified widget.

Attribute Required Description

scope no Section 4.3.4, “<ui:keyboardHandl er>"

widgetld no Id of Widget that is target of event produced by keyboard
handler.

eventld no Id of event that should be sent to target widget.

eventParam no Event parameters

updateRegions no Enumerates the regions of markup to be updated in this
widget scope. Please see <ui:updateRegion> for details.

globalUpdateRegions no Enumerates the regions of markup to be updated globally.
Please see <ui:updateRegion> for details.

keyCode no Keycode to which the event must be triggered. 13 means
enter. Either keyCode or key must be specified, but not both.

key no Key, to which the event must be triggered. Key is specified as

a certain 'alias. The alias may be an ASCII character or a

Aranea

4.4. Widget Tags

Attribute Required Description

digit (this will denote the corresponding key on a US
keyboard), a space (' '), or one of the following: 'return’,
‘escape, 'backspace, 'tab’, 'shift’, 'control’, 'space, 'f1', 'f2 ...,
'f12'.

keyCombo no Key combination, which should trigger the event. It can is

specified with key aiases separated with "+" signs. For
example "ctri+alt+f1", "alt+r" etc.

Examples

<l-- F2 listener that sends event 'add' to context w dget upon activation -->
<ui : event Keyboar dHandl er event| d="add" key="f2" wi dgetl|d="${w dgetld}"/>

4.4. Widget Tags

4.4.1. <ui:widgetContext>

This tag should generally be the root of every widget JSP. It makes the widget view model accessible as an EL
variable. It can also be used to render a descendant widget in the same JSP with the current widget. In the latter
case you should set the id attribute to the identifier path of the descendant widget in question. Note that all
widget-related tags inside of this tag will assume that the widget in question is their parent or ancestor (that is
all the identifier paths will start from it).

Attributes
Attribute Required Description
id no A dot-separated widget identifier path leading from the
current context widget to the new one.
Variables
Variable Description
widget The context widget instance. Can be used to access JavaBean property data
from the widget (e.g. ${wi dget.foo} will trandate to a get Foo() widget
cal}.
widgetld The full dot-separated identifier of the context widget.
viewData The view data of the context widget (see
BaseAppl i cati onW dget . put Vi ewDat a()).
viewModel The view model of the context widget.
scopedWidgetld The scoped id of the context widget.

Aranea 55

4.4.2. <ui:widget>

Examples
The most common usage of <ui:widgetContext> is as root tag for widget JSPs:

<?xm version="1.0" encodi ng="UTF-8""?>
<ui : W dget Cont ext >
<c:out val ue="${vi ewDat a. nyMessage}"/ >

</ ui : wi dget Cont ext >

The other use caseis to render a descendant widget:

<?xm version="1.0" encodi ng="UTF-8""?>
<ui : W dget Cont ext >
<ui : W dget Cont ext i d="chil d. of MyChi |l d">
<c:out val ue="${vi ewDat a. nessageFr ontChi | dOf MyChi | d} "

</ ui : wi dget Cont ext >

</ ui : wi dget Cont ext >

4.4.2. <ui:widget>

This tag is used when one needs to render a child or descendant widget while still retaining in both current
widget context and JSP. It publishes the widget view model and full identifier as EL variables, but does little
else and does not setup awidget context (e.g. <ui : wi dget | ncl ude> tag will not take it into account).

Attributes
Attribute Required Description
id yes A dot-separated widget identifier path leading from the
current context widget to the target widget.
Variables
Variable Description
widget The widget instance. Can be used to access JavaBean property data from the
widget (e.g. ${ wi dget . f oo} Will trandate to aget Foo() widget cal}.
widgetld The full dot-separated identifier of the widget.
viewData The view data of the widget (see BaseAppl i cat i onW dget . put Vi ewDat a()).
viewModel The view model of the widget.
scopedWidgetld The scoped id of the context widget.
Examples

<?xm version="1.0" encodi ng="UTF-8""?>

56 Aranea

4.4.3. <ui:widgetinclude>

<ui : Wi dget Cont ext >
<ui : wi dget id="child. of MyChil d">
<c:out val ue="${vi ewDat a. nessageFr ontChi | dOf MyChi | d} "
<ui : Wi dget I ncl ude i d="child"/>
</ ui : wi dget >

</ ui : wi dget Cont ext >

4.4.3. <ui:widgetinclude>

This tag is used to render some child or descendant widget. It will call the widget's render () method, which
will allow the target widget to choose how to render itself.

Attributes

Attribute Required Description

id yes A dot-separated widget identifier path leading from the
current context widget to the target widget.

path no Path to JSP, relative to j spPat h of
St andar dJspFi | t er Servi ce.

Examples

<?xm version="1.0" encodi ng="UTF-8""?>
<ui : W dget Cont ext >
<ui : Wi dget I ncl ude i d="chil d. of MyChi |l d"/ >

</ ui : wi dget Cont ext >

4.4.4. <ui:globalWidgetinclude>

Much like <ui : wi dget I ncl ude> , but this tag allows to include not only descendants of current context widget
but any widget that is accessible from global scope.

Attributes
Attribute Required Description
id yes A dot-separated full widget identifier.

4.5. Event-producing Tags

45.1. <ui:eventButton> and <ui:eventLinkButton>

Aranea 57

4.5.1. <ui:eventButton> and <ui:eventLinkButton>

These tags will render a button (or alink) that when clicked will send a specified event to the target widget with

an optional st ri ng parameter.

Attributes

Attribute Required Description

id no HTML "id" of the element that can be used to access it via
DOM.

labelld no The key of the localizable label that will be displayed on the
button.

eventld no The identifier of the event that will be sent to the target
widget.

eventParam no Stri ng event parameter that will accompany the event.

eventTarget no ID of receiving widget. Almost never set directly. Defaults to
current context widget.

disabled no If set to anot null value will show the button disabled.

renderMode no Allowed values are (button | input) - the corresponding
HTML tag will be used for rendering. Default is button. This
attribute only applies to <ui : event But t on>,
<ui : event Li nkBut t on> isaways rendered with HTML link.

styleClass no The CSS class that will override the default one.

updateRegions no Comma separated list of update regions that should be
updated upon button receiving event. This attribute is only
needed when using AJAX features—ordinary HTTP requests
always update whole page.

global UpdateRegions no Comma separated list of global update regions that should be
updated upon button receiving event. This attribute is only
needed when using AJAX features—ordinary HT TP requests
always update whole page.

onClickPrecondition no Precondition for deciding whether onclick event should go
server side or not. If left unspecified, this is considered to be
true.

tabindex no This attribute specifies the position of the current element in

the tabbing order for the current document. This value must
be a number between 0 and 32767.

HTML, Styles and JavaScript

The event But t on tag writes out an HTML <but t on> closed tag with a default CSS class of "aranea-button”.

Theevent Li nkBut t on tag writes out an HTML <a> open tag with a default CSS class of "aranea-link-button”.

Examples

58

Aranea

4.5.2. <ui:onLoadEvent>

<?xm version="1.0" encodi ng="UTF-8""?>
<ui : wi dget Cont ext >
<ui :eventButton eventld="test" event Paran¥"${bean.id}"/>
<ui : event Li nkButton event|ld="edit" event Paran¥"${bean.id}">
<ing src="editButton.png"/>
</ ui : event Li nkBut t on>

</ ui : wi dget Cont ext >

45.2. <ui:onLoadEvent>

This tag will register events that are executed when HTML page body has completely loaded. This tag can be
used multiple times, all specified events will be added to event queue and executed in order of addition.

Attributes

Attribute Required Description
event yes Event to register.
Examples

<?xm version="1.0" encodi ng="UTF-8""?>

<ui : onLoadEvent event="acti vateFl ashLi ghts();"/>
<ui : onLoadEvent event ="changeMenuBackG oundCol or();"/>

4.5.3. <ui:registerPopups>

This tag checks presence of server-side session-threads that represent popups and adds system loadevent for
opening them in new browser window at client-side. For tag to have an effect, HTML page BoDY tag must have
attribute onload event set to AraneaPage (See Aranea Clientside Javascript) onload event. Also, this tag only
works inside <ui:systemForm> tag.

Attributes

This tag has no attributes.

Examples

<?xm version="1.0" encodi ng="UTF-8"?>

<ui : body>
<ui : syst enFor m net hod=" PCST" >
<ui : regi st er Popups/ >
</ ui : syst entor n»
</ ui : body>

4.6. HTML entity Tags

Aranea 59

4.6.1. Predefined entity tags

HTML entities can be inserted by using the predefined entity tags or using the <ui:entity> for entities that have
not been defined by Aranea JSP library.

Theent ity tag accepts a attribute code which is used as & code; to get the HTML entity.

Attribute Required Description
code no HTML entity code, e.g. nbsp or #012.
count no Number of times to repeat the entity.

4.6.1. Predefined entity tags

The following predefined entities also accept the count attribute. 1t defines the number of times to repeat the
entity.

Tag Description

<ui:acute> HTML ´ entity.
<ui:copyright> HTML ©ri ght; entity.
<ui:gt> HTML > ; entity.
<ui:laquo> HTML &l aquo; entity.
<ui:lt> HTML &l t; entity.
<ui:nbsp> HTML entity.
<ui:raguo> HTML &r aquo; entity.
<ui:acute> HTML ´ entity.

4.7. Putting Widgets to Work with JSP

Now we have defined enough JSP tags to render our example widget (see Section 2.7.8, “Putting It All
Together”):

<?xm version="1.0" encodi ng="UTF-8"?>
<j sp: r oot
xm ns:jsp="http://]ava. sun. com JSP/ Page"
xm ns:c="http://java. sun.conijstl/core"
xm ns: ui ="http://araneaf ranewor k. org/tag-1ibrary/standard" version="1.2">
<ui : W dget Cont ext >
<h3>Test wi dget </ h3>

Data field: <c:out value="${viewData.nyData.field}"/>
<ui : event Button | abel | d="#Test" eventld="test"/>
</ ui : wi dget Cont ext >
</j sp:root>

We can use just usual JSTL Core library tags to access the widget view data, as long as the
<ui : wi dget Cont ext > iS present viathe vi ewbat a EL variable.

60 Aranea

4.8.1. <ui:layout>

4.8. Layout Tags

4.8.1. <ui:layout>

Represents alayout. Layouts allow to describe the way content will be placed on the page.

Attribute Required Applicableto:
width no Layout width.
rowClasses no Default style of rowsin thislayout.
cellClasses no Default style of cellsin thislayout.
styleClass no CSSclassfor tag.

Variables
Variable Description Type
rowClassProvider Provides row class, usually should not be used from JSP. RowCl assProvi der
cellClassProvider Provides cell class, usually should not be used from JSP. Cel | O assProvi der

4.8.2. <ui:row>

Represents arow in layout.

Attribute Required Applicableto:

height no Row height.

cellClasses no Default style of cellsin thisrow..

styleClass no Cell css class, defines the way the cell will
be rendered.

overrideLayout no Boolean that determines whether row's

own styleClass completely overrides
styleClass provided by surrounding layout
(default behaviour), or is appended to

layout's styleClass.
Variables
Variable Description Type
cellClassProvider Provides cell class, usualy should not be used from JSP. Cel | O assProvi der

Aranea 61

4.8.4. <ui:updateRegion> and

4.8.3. <ui:cell>

Represents a cell in layout.

Attribute Required Applicableto:

height no Row height.

width no Row width.

colSpan no Cdll colspan, sasmeasin HTML.

rowSpan no Cell rowspan, sameasin HTML.

styleClass no Cell cssclass, defines the way the cell will
be rendered.

overrideLayout no Boolean that determines whether cellss

own styleClass completely overrides
styleClass provided by surrounding layout
or row (default behaviour), or is appended
to layout's or row's styleClass.

Examples
Layouts, rows and cells are used together like this:

<?xm version="1.0" encodi ng="UTF- 8" ?>

<ui : |l ayout rowCl asses="even, odd" cel | C asses="one, two, t hree, four">
<ui : row>
<ui : cel | >
<l-- cell content -->
</ ui:cell>
</ ui:row>
</ ui : | ayout >

4.8.4. <ui:updateRegion> and <ui:updateRegionRows>

These two tags define the update regions in the output that can be updated via AJAX requests. The update
regions chosen to be updated when some event occurs is decided by tags that take the updat eRegi on attribute
(See Section 5.2.1, “Common attributes for all form element rendering tags.”).

The <ui : updat eRegi on> should be used when defining updateregion when the region is not contained in
HTML table (layout). The <ui : updat eRegi onRows> is for defining a region which is contained in HTML table
and contains table rows itself. Updating just cellsis not possible.

Attribute Required Description

id no The id of the region. Will be used to reference the region
when POST'ing aform.

globalld no When not using the gl obal 1 d, the full id will be formed by
concatenating the context widget id with the specified i d. If
for a reason you would want to avoid that, then you specify

62 Aranea

4.9. Presentation Tags

Attribute Required Description

theid with the gl obal 1 d attribute.

Eitheri d or gl obal I d attribute is required.

Examples

<?xm version="1.0" encodi ng="UTF-8" 2>

<I-- First update region, placed outside HTM. table -->
<ui : updat eRegi on i d="out si deTabl e" >

</ ui : updat eRegi on>

<ui : | ayout >

<!-- Second update region, placed inside HTM. table -->
<ui : updat eRegi onRows i d="i nsi deTabl e"/ >

<ui : row>

</ ui:row>

</ ui : updat eRegi onRows>
</ ui : | ayout >

<I-- Button that nmakes a background submt of specified event.
Wen response arrives specified updateregi ons are updated -->
<ui :eventButton id="test" updateRegi ons="out si deTabl e, i nsi deTabl e"/ >

4.9. Presentation Tags
Aranea JSP library contains synonyms for some (deprecated) HTML presentation tags.

4.9.1. <ui:bold>

Actsasthe HTML tag.

4.9.2. <ui:italic>

Actsas<i> HTML tag.

4.9.3. <ui:font>

Actsas HTML tag.

Attribute Required Applicableto:
face no The font face of the font.
color no The color of the font.

4.9.4. <ui:style>

Sets a CSS class for the tag content, acts as a HTML tag with the class atribute set.

Aranea

63

<ui:updateRegionRows>

Attribute Required
styleClass no

4.95. <ui:newline>

Puts avisual new line (<br/ >).

4.9.6. <ui:tooltip>

Applicableto:
CSS classfor tag.

Defines tooltip that is shown when web application user hovers mouse over element to which the tooltip is

attached.
Attribute Required
element yes
text yes
options no

4.9.7. <ui:basicButton>

Represents an HTML form button.

Applicableto:

HTML id of DOM element that is target
of the tooltip.

Tooltip content.

Options for tooltip (including tooltip
classname, title, etc -- see prototip.js for
details).

Attribute Required Applicableto:

renderMode no Allowed values are (button | input) - the
corresponding HTML tag will be used for
rendering. Default is button.

id no Button id, allows to access button from
JavaScript.

labelld no Id of button label.

onclick no ond i ck Javascript action.

styleClass no CSSclassfor button.

style no Inline CSS style for button.

4.9.8. <ui:basicLinkButton>

Represents alink with an onClick JavaScript action.

64

Aranea

4.9.9. <ui:link>

Attribute Required Applicableto:

id no Button id, allows to access button from
JavaScript.

styleClass no CSS classfor tag.

style no Inline CSS style for tag.

onclick no onCl i ck Javascript action.

labelld no Id of button label.

4.9.9. <ui:link>

Usual HTML link, actsasa<a> HTML tag.

Attribute Required Applicableto:

disabledStyleClass | no CSS classfor disabled link.

id no Link id, alows to access link from
JavaScript.

href no Link target URL.

target no Link target, same as <a> HTML tag
target attribute.

disabled no Controls whether the link is disabled,
disabled link doesn't link anywhere.

styleClass no CSS classfor tag.

style no Inline CSS style for tag.

4.10. Programming JSPs without HTML

Aranea standard tag library should mostly be enough to shelter end-users from the need to write HTML inside
JSPs. Snippets of HTML are alright but using it too often tends to lead to inflexible Ul; instead of embedding
HTML in JSPs custom tags should be written if the need arises.

When writing JSPs without embedded HTML, programmers best friends are styleClass attributes of
presentation tags, allowing tuning of tag appearances and layout tags.

Layout tags are tags extending BaseLayout Tag. Layout tags allow placing of rows inside them (and rows allow
using of cells inside). Standard layout tag (<ui:layout>) outputs HTML table, and standard row and cell tags
output HTML tr and td tags, respectively. This is by no means a requirement for layout tags—there are
probably ways to achieve the same behaviour with correctly styled HTML div tags; but the tables should do just
fine for majority of needs.

Aranea 65

4.12. Making New JSP Tags

4.11. Customizing Tag Styles

Presentation tags (tags extending Presentati onTag or implementing Styl edTagl nterface) have attribute
styl eC ass that specifies the CSS style class used for rendering the tag. When st yl ed ass attribute for tag is
not specified, some default style bundled with Aranea is used; or in some cases no HTML cl ass attribute is
output at all—allowing cascading styles from some parent (HTML) tag to take over the presentation.

Presentation tags also have st yl e attribute for specifying inline style for tag. Using it is discouraged—tweaking
style classes to fit ones specific needs is highly recommended.

Some tags may have more than one attributes for defining tag style. For example <ui : | ayout > tag and other
layout tags that extend Layout Ht ml Tag Or BaselLayout Tag have attributes r owd asses and cel | d asses that
specify the default styles for <ui : rows and <ui : cel | > tags used within the layout. These can be overriden with
row and cell own st yl ed ass attribute.

To actualy use new style(s) for some tag one often can just write a new CSS style (i.e. "sonestyle {
background: #ffc; color: #900; text-decoration: none; }")—apply that and be done with it. For more
complicated tags, one may need to take a quick peek at tag source code to see what HTML tags are output and
design their styles accordingly. Most of the time that should not be necessary.

Changing default tag styles can be done in two ways—modifying CSS files or extending the tag one wants to
customize with dynamic initializer like this:

{
}

styl eC ass = "sonme-want ed-styl e”;

needless to say, first method is very much preferred because creating custom tags just for changing tag stylesis
quite pointless.

Thereisalso ar ender Mode attribute; in current tag library there are very few tags supporting this attribute. One
of those is ButtonH m Tag (<ui : basi cButt on>)—its renderMode should have value "input" or "button"
(default) and it specifies whether the button should be rendered in HTML with <i nput type=button ... >o0r
<button ... >tag. Inthe future, number of JSP tags having renderMode attribute will probably increase (this
can be used to get rid of multiple JSP tags for rendering different types of (multi)selects, inputs and displays).

Attributes defining tag styles

Attribute Required Applicableto:

style Inline CSS style applied to tag. Avoid. Presentation tags.

styleClass CSSclass applied to tag. Presentation tags.

rowClass CSSclass applied to rowsinsidethetag. | Layout tags.

cellClass CSSclass applied to cellsinside the tag. Layout tags, row tags.

renderMode Defines the renderMode wused for <ui:basicButton>, <ui:eventButton>,
rendering the tag. <ui : butt on>.

4.12. Making New JSP Tags

66 Aranea

4.12.1. Utilities and base classes

JSP tags are very application specific, need for additional or modified JSP tags arises quite often. Due to
presentational nature of HTML and Javascript, extending the tags that really output HTML instead of providing
some information to subtags is messy. We look here at some more general tags and contracts that should be
followed when writing Aranea JSP tags.

4.12.1. Utilities and base classes

Custom tags should extend at least org.araneaframework.jsp.tag.BaseTag that provides methods for registering
subtags, manipulation of pagecontext and attribute evaluation.

import java.io.Witer;
i nport org. araneafranework. jsp.tag.entity. NospEntityH nl Tag;
i mport org.araneafranework.jsp.util.JspUil;

public class DumyTag ext ends BaseTag {
public static String KEY = "org. araneaf ranework. j sp. tag. DummyTag";

BaseTag subTag;

@verride
protected int doStart Tag(Witer out) throws Exception {
int result = super.doStartTag(out);

/1 make this tag inplenentation accessible to subtags which

/1 is quite pointless since this tag does not inplenment any useful interface.
/1 it denpbnstrates Aranea JSP convention for providing info to subtags
addCont ext Entry(KEY, this);

/'l wite sone real output that ends up at the served web page
JspUtil.witeQpenStart Tag(out, "div");
JspUtil.witeAttribute(out, "id", "dummyDivid");
JspUtil.wited oseStart Tag(out);

/1 it is possible to register in JAVA code too, this one just wites out nbsp entity.
subTag = new NbspEntityHt m Tag();

regi st er Subt ag(subTag) ;

execut eSt art Subt ag(subTag) ;

return result;

}

@verride
protected int doEndTag(Witer out) throws Exception {
execut eEndTagAndUnr egi st er (subTag) ;

JspUtil.witeEndTag(out, "div");

return super.doEndTag(out);
/1 Now everything about this tag ceases to exist,
/] context entries are renoved, souls are purged.

org. araneaframewor k. j sp. util.JspUtil that was used here is an utility class containing some functions for
writing out (XML) tags with somewhat less room for errors than just out. write(). Other notable methods
provided by BaseTag are get QutputData() that returns response data, get Configuration() and
get Local i zati onCont ext (). For tags with attributes, attribute evaluation functions that support Expression
Language (EL) expressions are provided in BaseTag. Typical usage of these functionsis following:

public void setWdth(String width) throws JspException {
this.width = (String)evaluate("w dth", width, String.class);
}

Another common base tag for tags that output real HTML is or g. ar aneaf r amewor k. j sp. Present at i onTag.

Aranea 67

4.12.2. Inheriting tag attributes from base tags.

The bumyTag should really extend it too, since it outputs some HTML. Present ati onTag defines style and
styleClass attributes that can be applied to most HTML tags.

Important tag cleanup method is doFi nal | y() that is called after rendering. It should be used to clear references
to objects that should no longer be referenced after rendering. As in containers tag instances can live very long
time, they can leak quite alot of memory unless resources are deall ocated.

4.12.2. Inheriting tag attributes from base tags.

Custom tags extending Aranea tags are able to accept all supertag attributes, but these must be also defined in
TLD, otherwise the JSP containers will complain. As some base tags may be abstract, information about their
attributes cannot be deduced from Aranea JSP standard TLD. To address this problem, Aranea distribution does
the following: araneajar and aranea-jsp.jar include the file META-INF/aranea-standard.tcd (TCD stands for
Tag Class Descriptor) which includes the attribute information for all Aranea Standard JSP classes. To make
use of this information, one first generates TLD for custom tag classes and then merges the TCD information
into it. It is done with or g. ar aneaf r amewor k. bui | duti | . TcdAndTl dMver ger Utility included in aranea.jar (since
1.0.10, previoudly it had to be compiled separately after downloading distribution). All custom compiled tag
classes as well as Aranea JSP tag classes must be available on classpath when using this utility.

Example of using the TcdAndTI dver ger Utility:

<target name="tld">
<l-- generate TLD without parent attribute information -->
<webdocl et destdir="somedir" force="fal se" >
<fileset dir="${src.dir}" includes="**/*Tag.java"/>

<jsptaglib validatexm ="true"
shor t Nane="short Narme"
filename="fil enane.tld"
uri ="custonuri"
descri pti on="descri pti on"
/>
</ webdocl et >

<!-- invoke the TcdAndTlI dMerger utility -->

<j ava cl assnane="org. ar aneaf ranewor k. bui | duti |l . TcdAndTl dMerger" fork="true">
<arg val ue="META- | NF/ ar anea- st andard. t cd"/ > <I-- Tag class descriptor to merge with -->
<arg val ue="sonedir/filenane.tld"/> <l-- Source TLD -->
<arg val ue="sonedir/fil enane.tld"/> <!-- Destination TLD -->

<cl asspat h>
<pat h refid="araneacl asspath"/>
<pat h refid="conpil edcust ont agcl asses"/ >
<path refid="varia">
</ cl asspat h>
</java>

</target>
When running given target, one should see messages similar to following:

8 attributes for 'custom RandoniTag'" found from'org. araneafranework. jsp.tag. presentation. Presentation’

4.12.3. Widgets and events

Sending events to widgets is accomplished with javascript submit functions, helpful utility being
org. araneaframework. jsp.util.JspUtil and org. araneaframework.jsp.util.JspWdgetCallWil. First
one would construct or g. ar aneaf ramewor k. j sp. Ui Event and (in case of HTML element which receives only
one event) cals JspUtil.witeEventAttributes(Witer out, U Event event) and afterwards

68 Aranea

4.12.4. Layouts

writeSubm t Scri pt For Event (Witer out,

String attributeNane).

/Ipublic U Event(String eventld, String event Target W dget,

U Event event =

new U Event ("hel | 0",

"cont ext Wdget | d",

/1 long way to ouput custom attributes version

String event Paraneter)

"nane") ;

JspUtil.witeEventAttributes(out,
JspW dget Cal | Util.witeSubmtScriptForEvent (out,

// short version

JspW dget Cal | Util.witeSubmtScriptForEvent (out,

/1 both will
// arn-evntld="hell o"

event);

out put sonething |like this:

/1 arn-trgtwdgt="context Wdgetl|d"

// arn-evnt Par =" nane"

/1 onclick="return _ap.event(this);"

4,12.4. Layouts

attri but eNane) ;

"onclick", event);

New layouts are mostly concerned with styles or render layouts with some additional tags instead plain t abl e,

tr,

td. As smple example, we define a layout that applies a class "error" to cells which contain invalid

For nEl errent . Note that approach we use only works when cell tag is aware of the surrounding For nEl ement at
the moment of rendering, meaning that For nEl enent isrendered in JSP something like this:

<?xm version="1.0" encodi ng="UTF-8""?>

<ui : f or nEl enent

<ui : cel | >
<ui : | abel / >
</ui:cell>

<ui:cell>
<ui :textlnput/>
</ui:cell>
</ ui : f or nEl enent >

i d="sonel d">

What is needed foremost is a decorator for cells that are used inside invalid For nEl enent .

public class ErrorMarkingCel | C assProvi der Decorator inplenents Cell Cd assProvider {
protected Cel | O assProvi der superProvi der;
prot ect ed PageCont ext pageCont ext;

/] constructs a decorator for superProvider,

public ErrorMarkingCel | Cl assProvi der Decor at or (Cel | C assProvi der super Provi der,

t hi s. super Provi der =
t hi s. pageCont ext

}

super Provi der ;

= pageCont ext ;

makes pageCont ext accessi bl e

public String getCell dass() throws JspException {

For nEl enent . Vi ewivbdel

f or nEl enent Vi ewivbdel

= (FornEl enment . Vi ewivbdel)

PageCont ext pageCont ¢

pageCont ext . get Attri but e(For nEl enent Tag. VI EW MODEL_KEY, PageCont ext . REQUEST_ SCOPE) ;

/'l superProvider.getCell Cass() may only be called once,
super Provi der. get Cel | d ass();

String superd ass =

if (fornEl ement Vi emvbdel != null
if (superdass != null)
return superClass + " error";
el se
return "error";
}
return superd ass;

&& ! for nEl ement Vi ewbdel .isValid()) {

ot herwi se noves on to next cell's style

Aranea

69

4.12.4. Layouts

Actual layout tag that decorates its cells according to described logic:

public class Custonlayout Tag ext ends Layout Ht m Tag {
protected int doStart Tag(Witer out) throws Exception {
int result = super.doStart Tag(out);

addCont ext Entry(Cel | Cl assProvi der. KEY, new Error Mar ki ngCel | Cl assProvi der Decor at or (t hi s,

return result;

}
}

70

Aranea

pageCont e

Chapter 5. Forms and Data Binding

One of the most common tasks in web applications is gathering user input, converting it to model objects and
then validating it. Thisistypically referred to as data binding and every major web framework has support for
this activity. In this chapter we will introduce the widgets and supporting APl that implement this tasks.

5.1. Forms

Unlike many other frameworks, in Aranea request processing, validating and data binding is not a separate part
of the framework, but just another component. Specially it is widget
org. araneaf ramewor k. ui | i b. f or m For mW dget and some support widgets. A typical form is shown on

Figure 5.1, “Form example”.

Editing person

* First name; 'Walcolm Last name; Feynulds
* Phone no; rirefly Birthdate: ﬂ
Salary:

Figure5.1. Form example

5.1.1. FormWidget

Let's say we have a Per son model JavaBean that |ooks like this:

public class Person {
private Long id;
private String nane;
private String surnane,;
private String phone;

public Long getld() {return id;}
public void setld(Long id) {this.id =id;}

public String getNanme() {return nane;}
public void setNane(String nane) {this.nane = nane;}

public String getSurnanme() {return surnane;}
public void setSurnane(String surnane) {this.surnane = surnane;}

public String getPhone() {return phone;}
public void setPhone(String phone) {this.phone = phone;}

A typical form will be created and used like this:

private BeanFor MW dget per sonForm
private Person person;

protected void init() {

per sonForm = new BeanFor m dget (Per son. cl ass);

5.1.1. FormWidget

addW dget (" per sonForni', personFornj;

per sonFor m addBeanEl enment (" nanme", "#Nane", new Text Control (new Long(3), null), true);
per sonFor m addBeanEl enent (" sur nane", "#lLast nanme", new Text Control (), true);
per sonFor m addBeanEl enment (" phone", "#Phone no", new TextControl (), true);

person = | ookupPer sonServi ce(). get SonmePerson();
per sonFor m r eadFr onBean(per son) ;

Note that here we basically do three things:

Create and register the form
The line new BeanFor mw dget (Person. cl ass) creates a new form widget that is associated with the
JavaBean model class Person . The line addw dget (" per sonFor ni', personForny initializes and registers
the form allowing it to function.

Add form fields
The line personFor m addBeanEl enent ("nane", "#Nane", new TextControl (new Long(3), null),
true) adds an element associated with the JavaBean property "name" (this is also the identifier of the
field), with a label "Name" (labels in Aranea are localizable by default and "#" escapes a non-localizable
string), atext box control with aminimal length of 3 and that is mandatory.

Write JavaBean
The line per sonFor m r eadFr onBean(per son) reads the data from JavaBean properties to the corresponding
form fields.

Now that we have created the form we show how to process events, validate and read the request data. The
following example code should be in the same widget as the previous:

private voi d handl eEvent Save() {
i f (personForm convertAndValidate()) {
per sonForm wr i t eToBean(per son) ;

| ookupPer sonServi ce() (). savePer son(person);

}
}

This code will execute if an event "save"' comes and will do the following:

e Convert the request data to the JavaBean types and validate it according to the rules specified in controls
(e.g. minimal length). Wrapping event body in if (personForm convertAndvalidate()) {...} isa
generic idiom in Aranea as we believe that explicitly leads to flexibility. By default the values will be just
read from request without any parsing, conversion or validation and the latter will be done only after the
convert AndVval i date() call. This allows for example to validate only a subform or even one element, by
caling only their convert Andval i dat e() method.

¢ Read the person object from the form, filling it in with the user data. Note that the same object that was
originally read from the business layer is used here and forms take care of merging the new data and
preserving the old.

Note the use of the get Vval ueByFul | Name() method. Form APl contains severa such methods (named
*ByFul | Narre()), which allow to access fields, controls and values using full dot-separated el ement names.

If you have a composite JavaBean (containing other JavaBeans) you may want to create a form with a similar

72 Aranea

5.1.2. Controls

structure. Let's say that our Per son bean contains an Addr ess under "address’ JavaBean property:

per sonFor m = new BeanFor MW dget (Per son. cl ass);
addW dget (" per sonForni', personFornj;

BeanFor mAN dget addr For m = per sonFor m addBeanSubFor n(" addr ess") ;
addr For m addBeanEl enent (" post al Code", "#Postal code", new TextControl (), true);
addr For m addBeanEl enent ("street", "#Street", new TextControl (), true);

Note that the fields will be available from the main form using a dot-separated name, e.g. String street =
(String) personForm get Val ueByFul | Name("address. street").

5.1.2. Controls

At the core of the data binding API lies the notion of controls (or g. ar aneaf ramewor k. ui | i b. f orm Control).
Controls are the widgets that do the actual parsing of the request parameters and correspond to the controls
found in HTML forms, like textbox, textarea, selectbox, button, ... Additionally controls also do a bit of
validating the submitted data. For example textbox control validates the minimum and maximum string length,
since the HTML tag can do the same. Programmer usually does not read values from Control directly, but
from For nEl ement that takes care of converting value of Control to For nEl enent Dat a.

The following example shows how to create a control:

Text Control textBox = new TextControl (new Long(10), null);

This code will create a textbox with a minimal length of 10. Note that this code does not yet put the control to
work, as controls are never used without forms, which are reviewed in the next section.

Follows atable of standard controlsall found in or g. ar aneaf ranewor k. ui | i b. f or m cont r ol package:

Control Description

But t onCont r ol A control that represents aHTML form button.

CheckboxCont r ol A control that represents a binary choice and is usualy rendered as a
checkbox.

Dat eCont r ol A date selection control that allows to choose a date. Supports custom

formats of date input and output.

Dat eTi neCont r ol A date and time selection control that allows to choose a date with a
corresponding time. Supports custom formats of date and time input and
output.

Di spl ayControl A control that can be used to render a read-only value that will not be

submitted with an HTML form.
Fi | eUpl oadCont r ol A control that can be used to upload files to the server.

Fl oat Cont r ol A textbox control that constrains the text to be floating-point numbers.
Can also check the allowed minimum and maximum limits.

Hi ddenCont r ol A control that can be used to render an invisible value that will be
submitted with an HTML form.

Aranea 73

5.1.2. Controls

Contral Description

Nurber Cont r ol A textbox control that constrains the text to be integer numbers. Can
also check the allowed minimum and maximum limits.

Ti meCont r ol A time selection control that alows to choose a time of day. Supports
custom formats of time input and output.

Text ar eaCont r ol A multirow textbox control that can constrain the inserted text minimal
and maximal length.

Text Cont r ol A simple textbox control with one row of text that can constrain the
inserted text minimal and maximal length.

Aut oConpl et eText Cont r ol Text Cont r ol with autocompletion capability.
Ti mest anpCont r ol Similar to Dat eCont r ol but workswithj ava. sql . Ti meSt anp.
Sel ect Cont r ol A control that allows to select one of many choices (may be rendered as

adropdown list or option buttons). Ensures that the submitted value was
one of the choices.

Ml ti Sel ect Control A control that allows to select several from many choices (may be
rendered as a multiselect list or checkbox list). Ensures that the
submitted values are a subset of the choices.

Sel ect Control and Mul ti Sel ect Control deserve a special mention, as they need a bit more handling than the
rest. The difference comes from the fact that we also need to handle the selectable options, which we refer to as
Di spl ayl tem Each Di spl ayl t emhas alabel, a string value and can be disabled. Disabled display items cannot
be selected in neither select box nor multiselect box.

Both Sel ect Control and Mul ti Sel ect Cont rol implement the Di spl ayl t enCont ai ner interface that allows to
manipulate the bi spl ay! t e

interface DisplayltentContainer {
void addltem(Di splayltemitem;
voi d addltens(Col |l ection itens);
void clearltens();
Li st getDisplayltens();
i nt getVal uel ndex(String val ue);

In addition to this interface we also provide aDi spl ayl teniti | that provides some support methods on display
items. These include the method add! t ems Fr onBeanCol | ect i on that allows to add the items to a (multi)select
control from a business method returning a collection of model JavaBean objects (which is one of the most
common use cases). So atypical select control will befilled as follows:

Sel ect Control control = new Sel ect Control ();

control .addltem(new Di splayltem(null, "- choice -"));
Di spl ayltemtil . addl t ensFr omBeanCol | ecti on(

control,

| ookupMySer vi ce() . get Myl t enCol | ection(),

"val ue",

"l abel ");

Controls can also listen to user events. For example But t onCont rol can react to an ond i ck event, while most
others can react to an onChange event. The only thing needed to receive the control events is to register an
appropriate event listener:

72 Aranea

5.1.3. Constraints

Sel ect Control sel Control = new Sel ect Control ();
For nEl enent sel EIl = form addBeanEl enent ("clientld", "#Cient id", selControl, true);
sel Cont r ol . addOnChangeEvent Li st ener (new OnChangeEvent Li st ener () {
public void onChange() {
//\We convert and validate one elenent only as the rest of the form
/I mght be invalid
if (sel El.convertAndValidate()) {
Long clientld = (Long) sel El.getVal ue();
// Now we can use the client id to do whatever we want
/'l E.g. update another select control

}
}
1)

onChange events are a so produced by text boxes and similar, so the user input can processed right after the user
has finished it.

5.1.3. Constraints

Though controls provide some amount of validation they are limited only to the rules that can be controlled on
the client-side. To support more diverse rules Aranea hasor g. ar aneaf r amewor k. ui | i b. f or m Const rai nt , that
allowsto put any logical and/or business validation rules. Typically constraints are used as follows:

myFor m addBeanEl enent ("regi strati on", "#Registration", new DateControl (), true);
nmyForm get El enent ("regi stration").set Constrai nt(new AfterTodayConstrai nt (fal se));

Theor g. ar aneaf ranmewor k. ui | i b. f orm constrai nt. Aft er TodayConst rai nt makes sure that the date is today
or later, with the boolean parameter indicating whether today is allowed. The constraint will validate if the form
or the element in question is validated (e.g. convert Andval i dat e() is called) and will show an error message
to the user, if the constraint was not satisfied. The error message is customizable using localization and
involves the label of the field being validated.

The following is a more complex example that shows how to use constraints that apply to more than one field,
and how to combine constraints using logical expressions:

sear chForm = new For mA dget () ;

/1 Addi ng form control s

sear chFor m addEl ement ("cl i ent Fi rst Nane", "#Cient first nane",
new Text Control (), new StringData(), false);
sear chFor m addEl ement (" cl i ent Last Nanme", "#Cient |ast nane",

new Text Control (), new StringData(), false);

sear chFor m addEl enent (" cl i ent AddressTown", "#Town",
new Text Control (), new StringData(), false);
sear chFor m addEl enent ("cl i ent AddressStreet", "#Street",

new Text Control (), new StringData(), false);

/I First searching scenario
AndConstrai nt clientNaneConstrai nt = new AndConstraint();
cl i ent NameConst rai nt. addConst rai nt (
new Not Enpt yConst r ai nt (sear chFor m get El ement ByFul | Nane("cl i entFi rst Nane")));
cl i ent NameConst r ai nt . addConst r ai nt (
new Not Enpt yConst r ai nt (sear chFor m get El enent ByFul | Name(" cl i ent Last Nange")));

/| Second searching scenario
AndConstrai nt client AddressConstraint = new AndConstraint();

Aranea 75

5.1.3. Constraints

cl i ent Addr essConstrai nt.addConstrai nt (

new Not Enpt yConst r ai nt (sear chFor m get El enent ByFul | Nane("cl i ent AddressTown")));
cl i ent Addr essConstrai nt. addConstrai nt (

new Not Enpt yConst r ai nt (sear chFor m get El enent ByFul | Nane("cl i ent AddressStreet")));

/| Conmbi ni ng scenari os

O Constrai nt searchConstraint = new OrConstraint();

sear chConstrai nt.addConstrai nt (cli ent NaneConstraint);
sear chConstrai nt. addConstrai nt (cl i ent AddressConstraint);

/] Setting custom error nmessage
sear chConstrai nt. set Cust onEr r or Message(" Not enough data for search!");

/] Setting constraint
sear chFor m set Constrai nt (searchConstrai nt);

//Putting the w dget
addW dget (" searchFornl', searchFornj;

The example use case is a two scenario search—either both client first name and client last name fields are
filled in or both town and street address fields are filled in, otherwise an error message "Not enough data for
search!" is shown. The constraints will be validated when convert Andval i date() method is called on
sear chFor m Note that the constraint is added to the form itself, rather than to its elements—this is a typical
idiom, when the constraint involves several elements.

Table of standard Const r ai nt S.

Constraint Purpose

Af t er TodayConst r ai nt Field constraint, checks that field contains Dat e later than current date.

Not Enpt yConst r ai nt Field constraint, checks that field contains non-empty value.

Nurber | nRangeConst r ai nt Field constraint, checks that number in a field belongs on given range
(integer only).

Stri ngLengt hl nRangeConstrai nt | Field constraint, checks that length of a string in a field fals within
given boundaries.

RangeConst r ai nt Multiple field constraint, checks that value of one field is lower than
value of other field. Field values must Conpar abl e.

AndConst r ai nt Composite constraint, checks that all subconstraints are satisfied.

Or Const r ai nt Composite constraint, checks that at least one subconstraint is satisfied.

There are two constraints that deserve a special mention. One of them is Opt i onal Constrai nt that will only let
its subconstraint to validate the field, if the field has been submitted by user (it is very useful for instance when
non-mandatory fields must nevertheless follow some pattern, whereas empty input should still be allowed).

The other constraint is caled G oupedConstraint. It is useful in cases when different constraints should be
activated depending on the particular state of the component (atypical use case is that some groups of fields are
made mandatory in different states of document approval). The constraint is created using the
Const rai nt Gr oupHel per asfollows:

Const rai nt GroupHel per groupHel per = new Constrai nt G oupHel per();
AndConstrai nt andCon = new AndConstraint();
andCon. addConst r ai nt (

76 Aranea

5.1.4. Data

groupHel per. creat eG oupedConstrai nt (new Not Enpt yConstrai nt (fieldl), "groupl"));
andCon. addConst r ai nt (

groupHel per. creat eG oupedConstrai nt (new Not Enpt yConstrai nt (fiel d2), "groupl"));
andCon. addConst r ai nt (

groupHel per. creat eG oupedConstrai nt (new Not Enpt yConstrai nt (fiel d3), "group2"));
andCon. addConst r ai nt (

groupHel per. creat eG oupedConstrai nt (new Not Enpt yConstrai nt (fiel d4), "group2"));
f orm set Const rai nt (andCon) ;

/I Now only fieldl and field2 will be required from user!
gr oupHel per . set Acti veG oup("groupl");

Custom Constraints

It is avery common need to validate some additional logic for a particular field (e.g. afield must follow some
particular pattern). In this case it is comfortable to create a custom constraint. Most often the congtraint is
associated with one field only, so we will extend the BaseFi el dConst rai nt, which supports this particular
idiom:

public class PersonldentifierConstraint extends BaseFi el dConstraint {
public void validateConstraint() {
if (!PersonUtil.validateldentifier(getValue()) {
addError("Field "" + getLabel() + "' is not a valid personal identifier");

}
}
}

Note that we can use get val ue() that contains the converted value of the field. We can also use the fields label
via get Label (). We might also want to localize the message and in such a case you will find Messagelti|l to
contain some helpful methods.

If we need to validate more than one field we should extend the BaseConst rai nt and take those fields into the
constructor. In this case the developer will have to provide this fields to the constraint and the constraint should
be added to the enclosing form.

5.1.4. Data

The typical use of forms includes associating the form fields with JavaBean properties. However this is not
always possible, since it is not feasible to make a JavaBean property for each and every form field. In such
cases one may till want to use type conversion and data validation. To do that forms alow the
org. araneaframewor k. ui l i b. form Data and its subclasses (subclasses correspond to specific types) to be
associated with the field:

per sonFor m = new BeanFor mW dget (Per son. cl ass) ;
addW dget (" per sonForn', personFornj;

per sonFor m addEl enent (" nunber Of Chi | dren”, "#No. of chidren",
new Number Control (), new LongData(), true);

In such a case one can retrieve the data directly from the field:

private void handl eEvent Save() ({
i f (myForm convertAndValidate()) {

Aranea 77

5.1.5. Converters

Long nunber O Chil dren = (Long) personForm get Val ueByFul | Nane(" nunber Of Chi | dren");
/1Al ternative:

/| For nEl ement nocEl = (FornEl enent) personForm get El enent (" nunber O Chi | dren");

/1 Long nunber O Chi |l dren = (Long) nocEl . get Val ue();

If there is no JavaBean to associate the form with org. ar aneaf r amewor k. ui | i b. f or m For mW dget may be
used instead of BeanFor m dget .

Note that the reason for existence of Data objects is that Java types correspond poorly to some restricted
types—for instance enumerations, type encodings and collections container types (this problem is somewhat
solved in Java 5, but Araneais compatible with Java 1.3).

Table of Dat a types.

Data Value Type

Bi gDeci nal Dat a j ava. mat h. Bi gDeci nal

Bi gDeci mal Li st Dat a Li st <java. mat h. Bi gDeci mal >
Bool eanDat a j ava. | ang. Bool ean

Bool eanLi st Dat a Li st <java.l ang. Bool ean>
Dat eDat a java.util.Date

Di spl ayl t enli st Dat a Li st <org. araneaframewor k. ui l i b. support. Di spl ayl t enDi spl ayl t en™

Fi | el nf oDat a or g. ar aneaf ranewor k. ui | i b. support. Filelnfo
I nt eger Dat a j ava. |l ang. | nt eger

I nt eger Li st Dat a Li st <java.lang.|nteger>

LongDat a java. | ang. Long

LongLi st Dat a Li st <java.l ang. Long>

StringDat a java.lang. String

StringLi stData Li st <java.lang. String>

Ti nest anpDat a j ava. sql . Ti mest anp

YNDat a java.lang. String

Finally Dat a constructor also accepts both a d ass instance and a simple string. So if you have a custom
datatype with an appropriate converter (see next section) you can just assign the data with the same type (in fact
if you have your own converter the type doesn't matter that much, it will just allow some checks to be done on
the programmer).

5.1.5. Converters

Converter sole purpose is conversion of vaues with one type to values of another type. Conventionally

78 Aranea

5.1.6. Form validation

converter which convert () method accepts object of type A and returns object of type B is named
AToBConverter. Converter from type B to type A is obtained with new ReverseConverter(new
AToBConverter()).

public interface Converter extends Serializable, FornEl enentAvare {
public void setFornEl emrent Ct x(For nEl enent Cont ext feCt x);
public Object convert(Object data);
public Object reverseConvert(Qbject data);
public Converter newConverter();

Converters are used internally to convert Control values to values of FornEl ement Data and vice-versa
Converters are usually looked up from Convert er Fact ory, but each For nEl enent can be set explicit Converter
by calling For nEl enent . set Converter (). Direction of Converter set this way should be from For nEl enent
Cont rol valuetypeto For nEl enent Dat a type.

5.1.6. Form validation

As aready mentioned, form validation is mostly explicit. By default, the values will be just read from request
without any parsing, conversion or validation. Validation will be performed after cal to
For MmN dget . convert AndVal i date().

It is also possible to configure forms to be validated in the background, as end-user is filling it. Background
validation is enabled by calling For mW dget . set Backgr oundVal i dati on(true). This performs XMLHttp
requests (using Aranea Action API) to server each time when user moves from changed form field to another.
Background validation takes place on server-side and isimplicit.

Produced form validation error messages are rendered by active For nEl enent Val i dat i onEr r or Render er
implementation, which adheres to these methods:

public interface FornEl ementValidationErrorRenderer extends Serializable {
voi d addError (FornEl ement el enent, String error);
voi d cl ear Errors(FornEl enent el enent);
String getdient Render Text (For nEl enent el enent) ;

}

The last method is used to provide the client-side script (together with <scri pt>. .. </ scri pt > tags) that binds
its validator with the given form element and updates error messages inside the element of the given
form element.

It is possible to choose between two bundled implementations —
St andar dFor nEl enent Val i dati onEr r or Render er, which is enabled by default, and
Local For nEl enent Val i dat i onEr r or Render er . The first one renders For nEl enent validation errors to standard
MessageCont ext . The second bundled implementation renders the validation messages into the same HTML
span element asinput field (using the script returned by the get i ent Render Text (For nEl enent) method).

For nEl enent Val i dat i onError Render er default implementation can be switched by configuring the bean
representing Configurati onContext (named 'araneaConfiguration') to have entry with key
'uil'i b.widgets.forns. fornel enent.error.renderer' value set to desired
For nEl enent Val i dat i onEr r or Render er instance:

<bean i d="araneaConfiguration" singleton="fal se"
cl ass="org. araneaf ranewor k. ui | i b. core. St andar dConfi gurati on">

Aranea 79

5.2. Forms JSP Tags

<property nane="confEntries">

<map>

<entry key="uilib.w dgets.formns.fornel enent.error.renderer"
val ue="or g. ar aneaf ramewor k. ui | i b. f orm Local For nEl enent Val i dati onError Renderer"/ >

</ map>
</ property>
</ bean>

For the cases where validation errors should be rendered differently for just few elements,
For nEl enent . set For nEl enent Val i dat i onEr r or Render er () method should be used.

5.2. Forms JSP Tags

Form JSP tags can be divided into two categories—tags providing contexts (<ui:form>, <ui:formElement>) and
tags for rendering form elements containing different controls. We will first describe the attributes that are
common to al form element rendering tags; then proceed to explain context tags and different form element
rendering tags with their unique attributes.

5.2.1. Common attributes for all form element rendering tags.

Attribute
id

events

Required

no/yes

no

Description

Id of form element to be rendered. If not specified, it is
usually taken from current form element context
(Section 5.2.3, “<ui:formElement>"). For few tags, it is
required.

Whether element will send events that are registered by
server-side, t r ue by default.

validateOnEvent

tabindex

no

no

Whether the form should be validated on the client-side (or
by making AJAX request to server) when element generates
an event (thisisfal se by default and is not supported by any
default Aranea JSP tags).

This attribute specifies the position of the current element in
the tabbing order for the current document. This value must
be a number between 0 and 32767.

updateRegions

global UpdateRegions

styleClass

style

no

no

no

Comma separated list of update regions that should be
updated upon button receiving event. This attribute is only
needed when using AJAX features— ordinary HT TP requests
always update whole page.

Comma separated list of global update regions that should be
updated upon button receiving event. This attribute is only
needed when using AJAX features— ordinary HTTP requests
always update whole page.

CSS class applied HTML tag(s) that are used for rendering
element.

Inline CSS style applied to HTML tag(s) that are used for
rendering element.

80

Aranea

5.2.3. <ui:formElement>

5.2.2. <ui:form>

Specifies form context for inner tags. Form view model and id are made accessible to inner tags as EL
variables.

Attributes
Attribute Required Description
id no Id of context form. When not specified, current form context
is preserved (if it exists).
Variables
Variable Description Type
form View model of form. For mW dget . Vi ewivbdel
formld Id of form. String
formFullld Full id of form. String
formScopedFullld Full scoped id of form. String
Examples

<?xm version="1.0" encodi ng="UTF- 8" ?>
<ui : formid="I ogi nFor m' >

<l-- fornEl enents, fornEl enentlLabels, ... --> ...
</ ui:fornm

5.2.3. <ui:formElement>

Specifies form element context for inner tags. Must be surrounded by <ui:form> tag. Form element view
model, id and value are made accessible to inner tags as EL variables.

Attributes
Attribute Required Description
id yes Id of context form element.

Variables
Variable Description Type
formElement View model of form element. For nEl ement . Vi ewMbdel
formElementld Id of form element. String
formElementVaue Vaue currently kept inside form element. bj ect

Aranea 81

5.2.4. <ui:label>

Examples

<?xm version="1.0" encodi ng="UTF-8"?>
<ui : formid="I ogi nFor m' >
<ui : fornEl enent i d="user nane" >

</ ui : f or nEl enent >
</ ui:fornpe

5.2.4. <ui:label>

Renders localizable label bound to form element. Rendered with HTML and <label> tags.

Attributes

Attribute Required Description

id no Id of form element which label should be rendered. If left
unspecified, form element id from form element context is
used.

showMandatory no Indicates whether mandatory input fields label is marked with
asterisk. Value should betrue or f al se, default istrue

showColon no Indicates whether colon is shown after the label. Default is

true.
Also has standard st yl e and st yl ed ass attributes.

Examples

<?xm version="1.0" encodi ng="UTF-8""?>
<ui: formid="I ogi nFor ni' >
<ui : row>
<ui : f or nEl enent i d="user nane">
<ui : cel | >
<ui : | abel / >
</ui:cell>
</ ui : f or nEl enent >
</ ui:row>
</ ui:forne

5.2.5. <ui:simpleLabel>

Renders localizable label (with HTML and <label> tags).

Attributes
Attribute Required Description
labelld yes ID of label to render.
showM andatory no Indicates whether label is marked with asterisk. Vaue should
betrue orfal se, default isf al se
showColon no Indicates whether colon is shown &fter the label. Default is

82 Aranea

5.2.6. <ui:button>

Attribute Required Description
true.
for no ID of the form element for which the label is created.

Also has standard st yl e and st yl ed ass attributes.

Examples

<?xm version="1.0" encodi ng="UTF-8""?>
<ui : formid="I ogi nFor m' >
<ui : row>
<ui:cell>
<ui : si npl eLabel | abel | d="usernane. i nput.| abel" showMandatory="true" for="username"/>
</ ui:cell>
</ ui : row>
</ ui: fornm

5.2.6. <ui:button>

Renders form buttons that represent But t onCont r ol s. Either HTML <button> or <input type="button" ... > will
be used for rendering.

Attributes

Attribute Required Description

showL abel no Indicates whether button label is shown.Value should bet r ue
or fal se, defaultistrue

onClickPrecondition no Precondition for deciding whether onclick event should go
server side or not. If left unspecified, this is considered to be
true.

renderMode no Allowed values are button and i nput —the corresponding
HTML tag will be used to render the button. Default is
button.

Also see Section 5.2.1, “ Common attributes for all form element rendering tags.” .

Examples

<?xm version="1.0" encodi ng="UTF-8""?>
<ui : formid="Il ogi nFor m' >

<ui : button id="Iogi nButton"/>
</ ui:form

5.2.7. <ui:linkButton>

Renders HTML link that represents Butt onControl . HTML tag will be used for
rendering. Default styl ed ass="ar anea- | i nk".

Attributes

Aranea 83

5.2.8. <ui:formKeyboardHandler>

Attribute
showL abel

onClickPrecondition

Required

no

no

Description

Indicates whether button label is shown.Vaue should bet rue
orfal se, defaultistrue

Precondition for deciding whether registered onclick event
should go server side or not. If left unspecified, this is
considered to bet r ue.

Also see Section 5.2.1, “ Common attributes for all form element rendering tags.” .

5.2.8. <ui:formKeyboardHandler>

Registers a simple keyboard handler. Invokes a ui Regi st er Keyboar dHandl er javascript. This is basically the
same stuff as <ui:keyboardHandler> with a few modifications.

There is no scope altribute. Instead, the tag assumes that it is located inside a form, and takes the full id of that

form as its scope.

As an dternative to specifying the handl er attribute, you may specify a form element and a javascript event to
invoke on that element. Y ou specify the element by itsid relative to the surrounding form. The event is given as
a name of the javascript function to be invoked on the element. For example, if you specify the element as
"someButton”, and event as "click", then when the required keyboard event occurs, the following javascript

will be executed:

var el = docunent. get El enent Byl d("<form i d>. soneButton");
el.click();
Attributes
Attribute Required Description
handler no A javascript handler function that takes two parameters - the

subscope

elementld

no

no

event object and the element id for which the event was fired.
Example: function(event, el ement | d) {
alert (el enentid); } Either handler or elementld/event pair
should be specified, not both.

Specifies form element which is the scope of this handler. By
default the "scope” (as in <ui : keyboar dHandl er Tag>) of this
keyboard handler is the form inside which the handler is
defined. By specifying this, scope of certain element may be
narrowed. For example if the handler is defined inside form
"myForm", and subscope is specified as "myelement"”, the
scope of the handler will be "myForm.myelement”, not the
default "myForm". The handler will therefore be active only
for the element 'someElement™.

Sets the (relative) i d of the element whose javascript event
should be invoked. The id is relative with respect to the
surrounding form. Instead of this attribute, element's full id
may be set using the f ul | El ement | d attribute, but only one of
those attributes should be set at once.

Aranea

5.2.9. <ui:formEnterKeyboardHandler>

Attribute Required

fullElementld no

event no

keyCode no

Description

Sets the full i d of the element whose javascript event should
be invoked.

Set the javascript event that should be invoked when keypress
is detected—"click" and "focus" are safe for most controls. If
target element (the one given by el enent 1 d) is a selectbox
"select" may be used. For more, javascript reference should
be consulted. This attribute is not foolproof and invalid
javascript may be produced when it is not used cautiously.

Keycode to which the event must be triggered. Either
keyCode or key must be specified, but not both.

key no

Examples

<?xm version="1.0" encodi ng="UTF- 8" ?>

<ui : formid="Il ogi nFor m' >

Key to which the event must be triggered, accepts key
"aliases' instead of codes. Accepted aliases include F1. . F12,
RETURN, ENTER, BACKSPACE, ESCAPE, TAB, SHIFT,
CONTROL, SPACE.

<ui : event Button id="btnLogi n" eventld="Iogin" |abelld="button.login.enter"/>
<ui : f or mKeyboar dHandl er ful | El enent | d="bt nLogi n" key="enter"/>

</ ui:fornpe

5.2.9. <ui:formEnterKeyboardHandler>

Same as <ui : f or nKeyboar dHandl er Tag> except key isalready settoent er .

5.2.10. <ui:formEscapeKeyboardHandler>

Same as <ui : f or nKeyboar dHandl er Tag> except key is aready set to escape.

5.2.11. <ui:textinput>

Form text input field, represents Text Control . It is rendered in HTML with <i nput type="text" ...> tag.

Default st yl ed ass="ar anea-text".

Attributes

Attribute Required Description

size no Maximum length of accepted text (in characters).
onChangePrecondition no Precondition for deciding whether registered onchange event

should go server side or not. If left unspecified, this is
considered to be true. For this tag, onchange event is
simulated with onblur.

Aranea

85

5.2.12. <ui:autoCompleteTextinput>

Also see Section 5.2.1, “ Common attributes for all form element rendering tags.” .

Examples

<?xm version="1.0" encodi ng="UTF- 8" ?>
<ui : form i d="someFor ni' >
<ui:fornEl ement id="firstField">
<!-- Renders input field binded to fornis firstField el enent -->
<ui :textlnput/>
</ ui : f or nEl enent >
</ ui: form

5.2.12. <ui:autoCompleteTextinput>

Form text input field, represents Aut oConpleteTextControl. It is rendered in HTML with <input
type="text" ...>tag. Default styl ed ass="aranea-text". It is able to make background AJAX request to
the server, fetching suggested completions to user input and displaying these to the user.

Attributes

Attribute Required Description

size no Maximum length of accepted text (in characters).

onChangePrecondition no Precondition for deciding whether registered onchange event
should go server side or not. If left unspecified, this is
considered to be true. For this tag, onchange event is
simulated with onblur.

divClass no CSS class attribute assigned to <DIV> inside which

suggestions are presented.

Also see Section 5.2.1, “ Common attributes for all form element rendering tags.” .

5.2.13. <ui:comboTextlnput>

Form text input field, represents ConboText Control . This is an input field combined with Select—it allows
end-user to enter text into field or select some predefined value from provided list of values. It is rendered in
HTML with <input type="text" ...> tag plus custom select component. Default

styl ed ass="aranea-text".

Attributes

Attribute Required Description

size no Maximum length of accepted text (in characters).
onChangePrecondition no Precondition for deciding whether registered onchange event

should go server side or not. If left unspecified, this is
considered to be true. For this tag, onchange event is
simulated with onblur.

Also see Section 5.2.1, “ Common attributes for all form element rendering tags.” .

86 Aranea

5.2.15. <ui:numberinput>

5.2.14. <ui:textinputDisplay>

Form text display field, represents Text Control . It is rendered in HTML with tag. Default
styl ed ass="ar anea-t ext-di spl ay".

Attributes
Has standard i d and st yl ed ass attributes.

Examples

<?xm version="1.0" encodi ng="UTF-8" ?>
<ui : form i d="sonmeFor ni' >
<ui:fornEl enent id="firstField" >
<!-- Renders display field for forms firstField el erent -->
<ui : text I nput Di spl ay/ >
</ ui : f or nEl enent >
</ ui:fornp

5.2.15. <ui:numberinput>

Form number input field, represents Nunber Control . It is rendered in HTML with <i nput type="text" ...>
tag. Default st yl eCl ass="ar anea- nunber " .

Attributes

Attribute Required Description

size no Maximum length of accepted text (in characters).
onChangePrecondition no Precondition for deciding whether registered onchange event

should go server side or not. If left unspecified, this is
considered to be true. For this tag, onchange event is
simulated with onblur.

Also see Section 5.2.1, “ Common attributes for all form element rendering tags.” .

5.2.16. <ui:numberlnputDisplay>

Form number display field, represents Nunber Cont rol . It is rendered in HTML with tag. Default
styl ed ass="ar anea- nunber - di spl ay".

Attributes
Has standard i d and st yl ed ass attributes.

5.2.17. <ui:floatinput>

Form floating-point number input field, represents Fl oat Control . It is rendered in HTML with <i nput
type="text" ...>tag. Default styl ed ass="aranea-fl oat".

Attributes

Aranea 87

5.2.18. <ui:floatinputDisplay>

Attribute Required Description

size no Maximum length of accepted floating-point number (in
characters).

onChangePrecondition no Precondition for deciding whether registered onchange event

should go server side or not. If left unspecified, this is
considered to be true. For this tag, onchange event is
simulated with onblur.

Also see Section 5.2.1, “ Common attributes for all form element rendering tags.” .

5.2.18. <ui:floatinputDisplay>

Form floating-point number display field, represents Fi oat Control . It is rendered in HTML with
tag. Default st yl ed ass="ar anea-f | oat - di spl ay" .

Attributes
Has standardi d and st yl ed ass attributes.

5.2.19. <ui:passwordIinput>

Form number input field, represents Text Control . It is rendered in HTML with <i nput type="password"
..>tag. Default styl ed ass="aranea-text".

Attributes
Attribute Required Description
size no Maximum length of password (in characters).
onChangePrecondition no Precondition for deciding whether registered onchange event

should go server side or not. If left unspecified, this is
considered to be true. For this tag, onchange event is
simulated with onblur.

Also see Section 5.2.1, “ Common attributes for all form element rendering tags.” .

5.2.20. <ui:textDisplay>

Form text display field, represents bi spl ayCont rol , displays element value as St ri ng. It isrendered in HTML
with tag.

Attributes
Has standard i d and st yl ed ass attributes.

5.2.21. <ui:valueDisplay>

Puts form element value in page scope variable, represents bi spl ayCont r ol . It does not output any HTML.

88 Aranea

5.2.22. <ui:textarea>

Attributes
Attribute Required Description
var true Name of the page-scoped EL variable that will be assigned

element value.

Also has standard i d attribute.

5.2.22. <ui:textarea>

Form text input area, represents Text ar eaControl . It isrendered in HTML with <textarea ... > tag. Default
styl ed ass="ar anea-textarea".

Attributes
Attribute Required Description
cols true Number of visible columnsin textarea.
rows true Number of visible rows in textarea

Also see Section 5.2.1, “ Common attributes for all form element rendering tags.” .

Examples

<?xm version="1.0" encodi ng="UTF- 8" ?>
<ui :form i d="soneFor ni' >
<ui : fornEl enent id="IonglLongText" >
<ui:cell>
<ui :textarea rows="15" col s="150"/>
</ ui:cell>
</ ui : f or nEl enent >
</ ui:fornpe

5.2.23. <ui:richtextarea>

Form text input area, represents Text areaControl . It is rendered in HTML with <textarea ...> tag with
styl eC ass="ri chText Edi t or". The area is displayed as arich text editor. The configuration of the editor is
done via <ui:richTextArealnit> The tag shares al the attributes of the <ui:textarea> except the
styl e ass which cannot be set for this tag.

5.2.24. <ui:richTextArealnit>

A tag for configuring the rich textareas. The tinyMCE [http://tinymce.moxiecode.com/] WY SIWY G editor is
attached to the textareas defined via <ui : ri chText ar ea> . The configuration lets you choose the looks, buttons,
functionality of the editor. See tinyMCE configuration reference
[http://tinymce.moxiecode.com/tinymce/docs/reference _configuration.html] for different configurable options.

The configuration is done via nesting key value pairs inside the <ui : ri chText Ar eal ni t >. For the key value
pairsthe <ui : at t ri but e> tag is used. See the example for an overview.

The edi t or _sel ect or and node options are set by default and should not be changed. The default t here is

Aranea 89

http://tinymce.moxiecode.com/
http://tinymce.moxiecode.com/tinymce/docs/reference_configuration.html

5.2.25. <ui:textareaDisplay>

"smple’.

Important: the configuration should be done in the <head> section of the HTML document.

Example

<ui:richText Areal nit>
<ui:attribute nanme="t heme" val ue="advanced"/>
<ui:attribute nanme="t heme_advanced_buttonsl1l" val ue="bol d,italic,underline, separator, code"/>
<ui:attribute nanme="t hene_advanced_t ool bar _| ocati on" val ue="top"/>
<ui :attribute nane="t hene_advanced_t ool bar _align" value="left"/>
<ui:attribute name="t heme_advanced_pat h_| ocati on" val ue="botton{/>
</ui:richTextArealnit>

5.2.25. <ui:textareaDisplay>

Form text display area, represents Text areaControl . It is rendered in HTML with tag. Default
styl eCl ass="ar anea-t ext ar ea- di spl ay".

Attributes
Attribute Required Description
escapeSingleSpaces false Boolean, specifying whether even single spaces (blanks)

should be replace with entities in output. It affects
browser performed text-wrapping. Default value is fal se.
Attribute is avail able since tag-library version 1.0.6.

Also has standard i d and st yl ed ass attributes.

5.2.26. <ui:hiddenInput>

Represents a "hidden" form input element—Hi ddenControl . It is rendered in HTML with <input
type="hi dden" ...>tag.

Attributes

See Section 5.2.1, “ Common attributes for all form element rendering tags.” . However, rendered tag is not
visible to end-user, thus using any attributes is mostly pointless.

5.2.27. <ui:checkbox>

Form checkbox input field, represents CheckboxControl. By default styl ed ass="aranea- checkbox".

Rendered in HTML with <i nput type="checkbox" ...>tag.
Attributes
Attribute Required Description
onChangePrecondition no Precondition for deciding whether registered onchange event

should go server side or not. If left unspecified, this is
considered to betrue

Also see Section 5.2.1, “ Common attributes for all form element rendering tags.” .

90 Aranea

5.2.29. <ui:fileUpload>

5.2.28. <ui:checkboxDisplay>

Form checkbox display field, represents CheckboxControl .

styl eCl ass="ar anea- checkbox- di spl ay". Rendered in HTML inside tag.

Attributes
Has standard i d and st yl ed ass attributes.

5.2.29. <ui:fileUpload>

Form file upload field, represents Fi | eUpl oadCont r ol .

Attributes
See Section 5.2.1, * Common attributes for all form element rendering tags.” .

Examples

<?xm version="1.0" encodi ng="UTF- 8" ?>

<ui : f orm i d="upl oadFor nf' >
<ui : row>
<ui :cell styled ass="nanme">
<ui:fileUpload id="file"/>
</ ui:cell>
</ ui : row>
</ ui:fornmp

5.2.30. <ui:datelnput>

Form date input field, represents Dat eCont r ol . Default st yl eCl ass="ar anea- dat e".
Attributes

Attribute Required Description

By default

onChangePrecondition no Precondition for deciding whether registered onchange event
should go server side or not. If left unspecified, this is

considered to be't r ue.

Also see Section 5.2.1, “ Common attributes for all form element rendering tags.” .

5.2.31. <ui:datelnputDisplay>

Form date display field, represents Dat eCont r ol . Default st yl eQl ass="ar anea- dat e- di spl ay" .

Attributes
Has standard i d and st yl ed ass attributes.

5.2.32. <ui:timelnput>

Form time input field, represents Ti mreCont rol . Default st yl ed ass="ar anea-ti me". HTML <select>s for easy

Aranea

91

5.2.33. <ui:timelnputDisplay>

hour/minute selection are rendered too, unless showTi meSel ect attribute forbidsit.

Attributes

Attribute Required Description

onChangePrecondition no Precondition for deciding whether registered onchange event
should go server side or not. If left unspecified, this is
considered to bet r ue.

showTimeSelect no Boolean, specifying whether HTML <select>'s should be
rendered for easy hour/minute selection. Default is to render
them (t r ue).

Also see Section 5.2.1, “ Common attributes for all form element rendering tags.” .

5.2.33. <ui:timelnputDisplay>

Form time display field, represents Ti neCont r ol . Default st yl ed ass="ar anea- t i me- di spl ay".

Attributes
Has standard i d and st yl ed ass attributes.

5.2.34. <ui:dateTimelnput>

Form input field for both date and time, represents Dat eTi neCont rol . It is rendered as input fields for date and
time + date picker and time picker (time picker can be switched off by setting showTi meSel ect ="f al se" if SO
desired).

Attributes
Attribute Required Description
onChangePrecondition no Precondition for deciding whether registered onchange event
should go server side or not. If left unspecified, this is
considered to bet r ue.
showTimeSelect no Boolean, specifying whether HTML <select>'s should be
rendered for easy hour/minute selection. Default is to render
them (t r ue).
dateStyleClass no styleClass for date. Default is "aranea-date”.
timeStyleClass no styleClass for time. Default is"aranea-time”.

Also see Section 5.2.1, “ Common attributes for all form element rendering tags.” .

5.2.35. <ui:dateTimelnputDisplay>

Form display field for both date and time, represents TineControl. Default
styl eCl ass="ar anea-dat eti ne-di spl ay".

Attributes

92 Aranea

5.2.36. <ui:select>

Has standard i d and st yl ed ass attributes.

5.2.36. <ui:select>

Form dropdown list input field, represents Sel ect Control . Default styl ed ass="ar anea- sel ect *, rendered
withHTML <sel ect ... > tag.

Attributes
Attribute Required Description
onChangePrecondition no Precondition for deciding whether registered onchange event
should go server side or not. If left unspecified, this is
considered to bet r ue.
size no Number of select elements visible at once.

Also see Section 5.2.1, “ Common attributes for all form element rendering tags.” .

5.2.37. <ui:selectDisplay>

Form select display field, represents Sel ectControl. Default styl ed ass="aranea-sel ect-di spl ay",
rendered with HTML tag.

Attributes
Has standard i d and st yl ed ass attributes.

5.2.38. <ui:multiSelect>

Form list input field, represents Mul ti Sel ect Cont rol . Default styl eCl ass="ar anea-mul ti - sel ect ", rendered
withHTML <sel ect nul tiple="true" ...>tag.

Attributes
Attribute Required Description
size no Vertical size, number of options displayed at once.

Also see Section 5.2.1, “ Common attributes for all form element rendering tags.” .

5.2.39. <ui:multiSelectDisplay>

Form multisel ect display field, represents Mul ti Sel ect Control . Default
styl eCl ass="aranea-nul ti - sel ect - di spl ay", rendered with HTML tag.

Attributes
Attribute Required Description
separator no The separator between list items, can be any string or \n' for

newline. Defaultis’,).

Aranea 93

5.2.40. <ui:radioSelect>

Has standard i d and st yl ed ass attributes.

5.2.40. <ui:radioSelect>

Form radioselect buttons field, represents Sel ect Control . Default styl ed ass="ar anea-r adi osel ect". It
takes care of rendering all its elements; internally using <ui:radioSelectltemLabel> and <ui:radioSel ectltem>

tags.

Attributes

Attribute Required Description

type no The way the radio buttons will be rendered - can be either
vertical or horizontal. By default "horizontal".

labelBefore no Boolean that controls whether label is before or after each

radio button, f al se by default.

Also see Section 5.2.1, “ Common attributes for all form element rendering tags.” .

5.2.41. <ui:radioSelectltem>

Form radio button, represents one item from Sel ect Cont r ol . Default styl ed ass="ar anea-radi o". It will be
rendered with HTML <i nput type="radio" ...>tag.

Attributes
Attribute Required Description
value no The value of this radio button that will be submitted with
form if thisradio button is selected.
onChangePrecondition no Precondition for deciding whether registered onchange event

should go server side or not. If left unspecified, this is
considered to bet r ue.

Also see Section 5.2.1, “ Common attributes for all form element rendering tags.” .

5.2.42. <ui:radioSelectltemLabel>

Form radio button label, represents label of one item from Sel ect Control . It will be rendered with HTML
tag.

Attributes

Attribute Required Description

value no Select item value.

showMandatory no Indicates whether label for mandatory input is marked with
asterisk. Vaue should bet rue or f al se, default ist r ue.

showColon no Indicates whether colon is shown between the label and

94 Aranea

5.2.43. <ui:checkboxMultiSelect>

Attribute Required Description

value. Defaultistrue

Also has standard i d and st yl ed ass attributes.

5.2.43. <ui:checkboxMultiSelect>

Form multiselect checkbox field, represents Ml ti Sel ect Control . It takes care of rendering all its elements;
internally using <ui:checkboxMulti Sel ectitemL abel > and <ui:checkboxM ulti Selectltem> tags.

Attributes

Attribute Required Description

type no The way the checkboxes will be rendered - can be either
vertical or horizontal. Default is horizontal .

|abelBefore no Boolean that controls whether label is before or after each

cehckbox, f al se by default.

Also see Section 5.2.1, “ Common attributes for all form element rendering tags.” .

5.2.44. <ui:checkboxMultiSelectltem>

Form radio button, represents one item from Mul ti Sel ect Control . Default
styl eC ass="aranea- nul ti - checkbox" . It will be rendered with HTML <i nput type="checkbox" ...>tag.
Attributes

Attribute Required Description

value no The value of this checkbox that will be submitted with form if

this checkbox is selected.

Also see Section 5.2.1, “ Common attributes for all form element rendering tags.” .

5.2.45. <ui:checkboxMultiSelectltemLabel>

Form checkbox label, represents label of one item from mul ti Sel ect Control . It will be rendered with HTML
tag.

Attributes

Attribute Required Description

value no Select item value.

showM andatory no Indicates whether label for mandatory input is marked with
asterisk. Vaue should betrue or f al se, default ist r ue.

showColon no Indicates whether colon is shown between the label and

Aranea 95

5.2.46. <ui:conditionalDisplay>

Attribute Required Description

value. Defaultistrue

Also has standard i d and st yl ed ass attributes.

5.2.46. <ui:conditionalDisplay>

Depending whether form element boolean value is true or false display one or other content, represents
Di spl ayControl . <ui : condi ti onFal se> and <ui : condi ti onFal se> tags must be used inside this tag to define
aternative contents. Thistag itself is not rendered.

Attributes
Has standard i d attribute.

5.2.47. <ui:conditionFalse>

The content of this tag will be displayed when form element of surrounding <ui : condi ti onal Di spl ay> was
f al se. Tag has no attributes.

5.2.48. <ui:conditionTrue>

The content of this tag will be displayed when form element of surrounding <ui : condi ti onal Di spl ay> was
t rue. Tag has no attributes.

Examples

<?xm version="1.0" encodi ng="UTF- 8" ?>
<ui: form i d="someFor ni' >
<ui : condi ti onal Di splay id="isActive">
<ui : condi ti onTrue>
<inmg src="red_flag.png"/>
</ ui:conditionTrue>
<ui : condi ti onFal se>
<ing src="green_flag. png"/>
</ ui : condi ti onFal se>
</ ui : condi ti onal Di spl ay>
</ui:fornp

5.2.49. <ui:listDisplay>

Display form element value as list of strings, represents Di spl ayCont rol and requires that element value would
be of type Col | ectii on.

Attributes
Attribute Required Description
separator no The separator between list items, can be any string and "\n",

meaning a newline (default is"\n").

Also has standard i d and st yl ed ass attributes.

96 Aranea

5.3. Form Lists

5.2.50. <ui:automaticFormElement>

Sometimes the type of FornEl ement is not known for sure when writing JSP (it could be text!nput,
float | nput, sel ect, ...). For that purpose, For nEl enent that has some known identifier can be dynamically
associated with some JSP tag in Java code and then rendered with <ui : aut omat i cFor nEl enent > tag which uses
associated tag to render For nEl enent .

Attributes
See Section 5.2.1, “ Common attributes for all form element rendering tags.” .

Examples

In Java code, setting tag that should rendering element is done by either setting For nEl enent property or
preferably by using Aut omat i cFor nEl ement Uti | utility which makes the code dlightly less verbose. Following
lines of code all do the same thing:

el enent . set Property(For nEl ement Vi ewSel ect or. FORM_ELEMENT VI EW SELECTOR_PROPERTY, new For nEl enent Vi ewS:
Aut omat i cFor nEl enent Uti | . set For nEl ement Vi ewSel ect or (el ement, new For nEl ement Vi ewSel ector (tag, attri but
Aut omat i cFor nEl ement Ut i | . set For nEl enent Tag(el enent, tag, attributes);

<?xm version="1.0" encodi ng="UTF-8" ?>
<ui : f or nEl enent i d="sonmeFor ni'>
<ui:cell>
<ui : aut omat i cFor nEl enent / >
</ ui:cell>
</ ui : f or nEl enent >

5.3. Form Lists

A common need in handling data is allowing a user to list of data, where the number of rows is not known
beforehand (atypical example being user inputting one to many addresses). Aranea supports such a use case by
providing a special type of FornEl enent that deals an arbitrary amount of subforms. This element is called
For mLi st W dget and it can be used both on its own or as a subelement just like a For mw dget . An example of a
form list is shown on Figure 5.2, “Insert your name display”.

a Malcolm Reynolds Firefly |Z|
[Buffy Summers Sunnydale |Z|
7 Robert MeCall Los Angeles =
8 David Wincent Stylish Ford |
9 Arthur Dert Towel 15.03.2006 ™
10 Willow Rosenberg Sunnydale Library |Z|

| | | & Add

Figure5.2. Insert your name display

5.3.1. FormListWidget

Unlike usua forms, form lists are "lazy", from the point that they are tied to a modd and update themselves

Aranea 97

5.3.1. FormListWidget

according to it. To create aform list widget we passit amodel and a handler:

public void init() throws Exception {
private FornLi st Wdget personFornLi st;

Map persons = | ookupMyServi ce(). get Persons();

per sonFornii st = new BeanFor nLi st W dget (
new Per sonFor nRowHandl er (),
new MapFor nii st Model (per sons),
Per son. cl ass) ;

addW dget (" per sonFor nLi st", personFornList);
}

Note here that we have tied the form list to the model that uses a Map as the underlying storage. When we
update that map, the form list will also be updated. Note also that the form list widget is associated with the
Per son bean class, which can be used to manipulate the beans under the model.

However this code doesn't yet tell us much. The bulk of the custom logic of the form lists is hidden in the
Per sonFor mRowHandl er class. Let'sinspect it step by step.

Every form row handler must implement the For nRowHandl er interface. In our case we choose to extend
Val i dOnl yI ndi vi dual For nRowHandl er , which processes only valid form rows and allows to process them one
by one, not al at once:

cl ass Per sonFor mRowHandl er
extends Val i dOnl yl ndi vi dual For nRowHandl er {

The first method we have to implement is get Rowkey. It is used by the form list widget to identify the row
among the others. Since typically the row is just a bean we can identify it using its identifier (either a natural
one or artificial, aslong asits unique in this context):

public Object get RowKey(Obj ect rowData) {
return ((Person) rowData).getld();
}

The next method is caled i ni t AddFor mand it will create aform used to add new rows to the form list:

public void initAddFor m For MmN dget addForn) throws Exception {

addFor m addBeanEl enent (" nane", "#First name", new TextControl (), true);
addFor m addBeanEl ement (" sur name", "#lLast nane", new TextControl (), true);
addFor m addBeanEl enent (" phone", "#Phone no", new TextControl (), false);

FormLi st Uti | . addAddBut t onToAddFor m(" #", fornList, addForm;

The bulk of thelogic isjust adding the fields to the add form. But we also use the For nii st Uti | to add a button
"Add" to the form, that will take care of the actual adding anew row (or at least calling the form row handler to
do that). FornListutil contains alot of helpful methods for manipulating form lists and more on it can be
found in Section 5.3.2, “FormListUtil”. The next step would be to handle the user clicking the add button and
add a new row to the model. Since we process only valid rows the method will be named addval i dRow:

98 Aranea

5.3.2. FormListUtil

public voi d addVal i dRow For MmN dget addForn) throws Exception {
Person person = (Person) (((BeanFormA dget)addForn).witeToBean(new Person()));
/W& want to save changes i medi ately
person = | ookupPer sonServi ce. addPer son(person);
dat a. add(person. getld(), person);

Note that although we save the changes here immediately, form lists also support deferring this until some later
point as described in Section 5.3.5, “In Memory Form List”. Now that we have added a row to the model we
will also haveto initialize aform for that using i ni t For mRow method:

public void initFormRow For nRow f or mMRow, Obj ect rowbData) throws Exception {
/1 Set initial status of list rows to closed - they cannot be edited before opened.
f or mRow. cl ose();

BeanFor mMW dget form = (BeanFor mW dget) f or nRow. get For () ;

f or m addBeanEl enent (" nanme", "#First name", new TextControl (), true);
f or m addBeanEl ement (" surnane”, "#Last nane", new TextControl (), true);
f or m addBeanEl ement (" phone", "#Phone no", new TextControl (), false);

FormLi st Util.addEdi t SaveBut t onToRowFor m("#", fornList, form getRowKey(rowData));
Fornli st Util.addDel et eButt onToRowFor m("#", fornlist, form getRowKey(rowbata));

f orm r eadFr onBean(r owbDat a) ;

Note that most of the fields are same for add form and edit forms, so in area setup we could easily have added
a method addConmonFi el ds(For M dget) that would add those fields to any given form (it is actually a very
common idiom to do that). Finally we have to handle the saving of row form:

public void saveVal i dRow(For mMRow f or mRow) throws Exception {
BeanFor mAN dget form = (BeanFor miW dget) fornRow. get Forn();
Person person = (Person) formwiteToBean(data. get (fornmRow. getKey()));

| ookupPer sonServi ce(). save(rowbat a) ;
dat a. put (person. getld(), person);
}

And the last one | eft is deletion:

public void del et eRow(Cbj ect key) throws Exception {
Long id = (Long) key;
| ookupPer sonService().remove(id);
dat a. renove(id);

}

5.3.2. FormListUtil

FornList Uil provides a couple of methods that help to handle form maps passed to some of the handler
methods. However of main interest are the methods that add various buttons with ready logic to the add forms
and row forms,

Aranea 99

5.3.3. Form Row Handlers

Method Description
addSaveBut t onToRowFor n{) Button that will save the current row.
addDel et eBut t onToRowFor () Button that will delete the current row.

addOpend oseBut t onToRowFor n{) | Button that will open or close the current row for editing (it inverts the
current state).

addEdi t SaveBut t onToRowFor n{) Button that will open/close the row for editing, however will also save it
after editing isfinished and the row is closed.

addAddBut t onToAddFor () Button that will add a new row, should be added to the addition form.

5.3.3. Form Row Handlers

Since row form handler interface supports bulk saving/adding/deleting of row formsit is comfortable to use one
of the base classes that will do some of the work for you.

Class Description

Def aul t For mRowHandl er Implements all of the menthods and default handling of
opening/closing rows.

Val i dOnl yFor nRowHand! er Checks that all of the added/saved rows are valid.
I ndi vi dual For mRowHandl er Supports one by one processing of row saving and deleting.
Val i dOnl yI ndi vi dual For mRowHand! er Supports one by one processing of row saving and deleting.

Checks that all of the added/saved rows are valid.

Note that row handlers also have an openOr O oseRow method that may be overridden if one wants more than
just inverting the row state on user action.

5.3.4. Models

5.3.5. In Memory Form List

Often it is the case that we do not want to save the changes in the form list to the database until the user presses
the "Save" button. For such a use case we provide | nMenor yFor nLi st Hel per . To use the helper we first need to
initialize the form list to use the helper mode!:

private BeanFor nLi st Wdget personFor nLi st ;
private | nMenoryFornli st Hel per i nMenoryHel per;

public void init() throws Exception {
private FornLi st Wdget personFormnLi st;

Map persons = | ookupMyServi ce(). get Persons();

per sonFor niLi st = new BeanFor nLi st W dget (new Per sonFor mRowHandl er (), Person. cl ass);
i nMenor yHel per = new | nMenor yFor nLi st Hel per (

per sonFor nii st

| ookupPer sonServi ce() . get SonePersonList());

100 Aranea

5.4. Form Lists JSP Tags

addW dget (" per sonFor nLi st", personFornList);
}

Now we just have to add/save/del ete the row to/from the helper:

public void saveVal i dRow(For nRow edi t abl eRow) t hrows Exception {

i' ﬁi\/brmryHeI per . updat e(edi t abl eRow. get Key(), rowData);
}

public void del et eRow(Cbj ect key) throws Exception {

i nMenor yHel per . del et e(key);
}

public voi d addVal i dRow For MmN dget addForn) throws Exception {

i- ﬁi\/larmryl—bl per . add(rowbDat a) ;
}

And when the user presses "Save" we can just process the changes:

protected void handl eEvent Save() {
| ookupPer sonSer vi ce. addAl | (i nMenor yHel per. get Added() . val ues());
| ookupPer sonSer vi ce. saveAl | (i nMenor yHel per . get Updat ed() . val ues());
| ookupPer sonSer vi ce. del et eAl | (i nMenor yHel per. get Del eted());

}

5.4. Form Lists JSP Tags

5.4.1. <ui:formList>

Formlistisalist of forms, an editable list. Thistag specifies editable list context for itsinner tags.

Attributes

Attribute Required Description

id no Id of editable list. When not specified, attempt is made to
construct it from existing list context—it this does not
succeed, tag fails.

Variables

Variable Description Type

formList Editable list view model. For mLi st W dget . Vi ewvbdel

formListld Editablelist id. String

Aranea 101

5.4.2. <ui:formListRows>

Examples

<?xm version="1.0" encodi ng="UTF- 8" ?>
<ui:list id="list">

<ui : fornLi st>

</ ui: fornList>
</ui:list>

5.4.2. <ui:formListRows>

Iterating tag that gives access to each row and row form on the editable list current page. The editable row is

accessible as "editableRow" variable.

Attributes

Attribute Required Description

var no Name of variable that represents individual row (by default

"row").

Variables

Variable Description Type
formRow Current editable list row view model. For mRow. Vi ewMbdel
row (unless changed Object held in current row. Qbj ect

with var attribute).

Examples

<?xm version="1.0" encodi ng="UTF- 8" ?>

<ui:list id="list">
<ui : fornli st>
<ui : for nLi st Rows>

</ ui:fornlLi st Rows>

</ ui:fornList>
</ui:list>

5.4.3. <ui:formListAddForm>

Allows for adding new forms (rows) to editable list.

Attributes
Attribute Required
id no

Description

Editable list id. Searched from context, if not specified.

102

Aranea

5.4.3. <ui:formListAddForm>

Variables

Variable
form

formid

formFullld
formScopedFullld

Examples

Description

View model of form.
Id of form.

Full id of form.

Full scoped id of form.

<?xm version="1.0" encodi ng="UTF-8""?>
<ui : f or nLi st AddFor n»

<ul :

</ ui

r ow>
<ui :cell>

<ui : text | nput
</ui:cell>

<ui :cell>
<ui : text | nput
</ui:cell>

<ui :cell>
<ui : text | nput
</ ui:cell>

<ui:cell>

<ui : dat el nput
</ ui:cell>
r ow>

</ ui : fornLi st AddFor n>

i d="nane"/ >

i d="sur nane"/ >

i d="phone"/ >

i d="birthdate"/>

Type

For M\ dget . Vi emvbdel
String
String

String

Aranea

103

Chapter 6. Lists and Query Browsing

6.1. Introduction

A common task in web applications is displaying tables. Thisis a simple task if the tables are small and do not
contain alot of rows. The whole table can be visible at once and there is ho need to split the data into pages as
well as provide an option to order the table by new column or display a search form that can be used to filter
the data. In such cases where these features must be available, Aranea provides widget
org. araneaf ramewor k. ui | i b. l'i st. Li st Wdget and some support classes. In this chapter we will introduce
these widgets and supporting APl and show how to use and extend them.

Li st W dget isused to define the list columns, the way the list can be filtered and ordered, how many items are
shown per pages €tc. Li st W dget USES or g. ar aneaf ramewor k. ui | i b. | i st. dat apr ovi der. Li st Dat aPr ovi der
to get the current list items range that also match with the current filter and order conditions.
Li st Dat aPr ovi der can cache whole table and provide the Li st W dget with the appropriate item range or fetch
only the specific item range from database. Aranea provides two implementations:

org. araneaf ramewor k. ui i b. i st. dat aprovi der. Menor yBasedLi st Dat aPr ovi der
This is the memory-based solution that must be provided with the whole data at once. It does filtering ,
ordering and paging memory-based. The data source is not restricted here. This is a very fast and
easy-to-use solution for tables with few (typically less than 100) rows. This is a good solution when your
server has enough memory to store all the rows, and quering all the rows does not take much time.

org. araneaframewor k. ui l i b. i st. dat aprovi der. BackendLi st Dat aPr ovi der
This is the database solution that will cache only the current item range and executes a new database query
each time a filtering , ordering or paging conditions change. This is a powerful solution for tables with
more than 500 rows. Especially, when the query is complex and takes time (so it would not be useful to
query all the rows at once).

6.2. Lists API

6.2.1. A Typical List

A typical list will be created used like this:

private BeanLi st Wdget nylLi st;
protected void init() {
myLi st = new BeanLi st W dget (MyModel . cl ass);

myLi st. set Or der abl eByDef aul t (true);

nyLi st. addFi el d(" nane", "#Nane").like();

myLi st. addFi el d("surnanme", "#Surnane").like();

nyLi st . addFi el d(" phone", "#Phone no").like();

myLi st. addFi el d("birthdate", "#Birthdate").range();

myLi st.setlnitial Oder("nane", true);
nyLi st. set Li st Dat aPr ovi der (new MyLi st Dat aProvi der());
addW dget (" myList", myList);

6.2.2. Fields

}

Note that here we basically do following things:

Create thelist
The line new BeanLi st W dget (MyModel . cl ass) creates a new list widget that is associated with the
JavaBean model class wyModel .

Make fields orderable
ThelinenyLi st. set Or der abl eByDef aul t (true) configuresthe following fields as orderable.

Add list fields
The line nyLi st. addFi el d("nanme", “#Nane").like() adds afield associated with the JavaBean property
"name" (thisisaso theidentifier of the field), with alabel "Name", makes the field filterable by Li ke filter.

Set theinitial list order
ThelinenyList.setlnitial Oder("name", true) Setsthelist to be ordered by field "name" by default.

Set the list data provider
ThelinenyLi st . set Li st Dat aPr ovi der (new MyLi st Dat aPr ovi der ()) Setsthe data provider for the list.

Register the list
Theline addw dget ("nyLi st", nyList) initializesand registersthelist allowing it to function.

Now that we have created the list we show how to build a simple data provider. The following example code
should be in the same widget as the previous:

private class MyMenoryBasedLi st Dat aProvi der extends MenoryBasedLi st Dat aProvi der {
protected MyMenoryBasedLi st Dat aProvi der () {
super (MyModel . cl ass) ;

public List |oadData() throws Exception {
return | ookupMyService().findAl | MyMddel ();

}
}

The line super (MyModel . cl ass) associated this MenoryBasedLi st Dat aPr ovi der with the JavaBean model
class MyModel . The method Li st | oadDat a() implements loading all table rows and returning it as a Li st
object.

Later, we will also discover using
org. araneaf ramework. ui l i b. i st. dataprovi der. BackendLi st Dat aProvi der .

6.2.2. Fields

As the list may be displayed as a table, it is basically an ordered collection of items. In the previous example,
we defined a list of MyModel . cl ass typed items that have fields 'name’, 'surname’, '‘phone’ and 'birthdate’. By
listing of M/Model . class, we also told Listwdget the corresponding field types, e.g String.class,
String.cl ass, Long. cl ass and Dat e. cl ass. In fact this feature of reflection is the only distinction between the
Li st W dget and BeanlLi st W dget .

Each list field have its own Id, label and type. The labels are used to automatically create a corresponding title
row above the displayed table. The types are used to describe how to order or filter the whole data using this
field. E.g string. cl ass is treated differently than other types, because usually one would prefer to order by

106 Aranea

6.2.3. Ordering

this field ignoring the case. Both the labels and types are also used to build a corresponding search form - an
automatically built For mw dget - for thelist.

If we would like to add some list fields that are not M/Model . cl ass fields, we can pass it's type to the
Li st W dget like following:

nmyLi st. addFi el d("i ncone", "#l ncone", BigDecinal.class);

HerethenyLi st could bejust aLi st W dget rather than aBeanLi st W dget .

When adding alist field, we can also provide this field-related ordering and filtering information.

6.2.3. Ordering

Each list field can be orderable or not. We aready discovered ListWdget's method
set Or der abl eByDef aul t (bool ean) that switch whether to configure fields that are added afterwards orderable
or not. This method can be used several timesin the list configuration.

Another way isto set each field individually orderable or not when they are added to the list. In such case add
additional boolean argument to the addFi el d() method such as:

myLi st. addFi el d(" phone", "#Phone no", false);

Notice the f al se as third parameter. t r ue means that the list can be ordered by this field and f al se means the
opposite. By not providing this parameter, simply the last value is used which has been set by
set Or der abl eByDef aul t (bool ean) method.

In addition, we aready used method set I nitial Order(String, boolean). It sets a specified field (the first
argument) to be ordered by default. t r ue as the second argument tells the ordering should be ascending, f al se
would mean descending. By not providing this information, thelist is displayed in the original order.

6.2.4. Filtering

Filtering means that we only display a certain list items. The list can be filtered using its fields and data
provided by the search form of thislist.

For this, we must provide the Li st W dget with the corresponding
org. araneaframewor k. ui lib.list.structure.ListFilters and FornEl enents. As the form elements are
dummy "boxes" that hold search data, each Li st Fil ter isrelated to a certain filter test, e.g. equality, greater
than comparison etc. Each Li st Fi | t er also knows what information it must consider. In general, one list field
is compared against a value provided by the search form. It's also assumed that a blank search field means that
this particular Li st W dget is currently disabled.

Fortunately, in most cases it's unnecessary to add these search fields manually. Instead, if one is adding a list
field, he or she can assign both the Li st Fi I t er and For nEl enent for thisfield very simply:

nyLi st . addFi el d("address", "#Address").like();

Here we simply add an 'Address’ field providing it with label and telling there's should be a Like filter for this
field. By this, we automatically add a Text Cont r ol into the search form. By filling it with value 'Paris, we will
see only rows which 'Address field contain 'Paris, 'paris, 'PARIS etc.

To describe, how this works, we show alonger version of the previous code:

myLi st. addFi el d("address", "#Address");
nyLi st.getFilterHel per().like("address");

Aranea 107

6.2.4. Filtering

So there's a special classorg. araneaframework. ui l i b.list.structure.filter.FilterHel per that isusedto
add list filters. All Li st W dget . addFi el d() methods just return a little different version of this helper class,
called aFi el dFi | t er Hel per . It's methods do not need afield Id and thus make one not to repeat the same field
Id for each filter. In general, the shorter usage is recommended of course. However some filters are more
complicated and may be related to more than one list field. For those, one must use theFi | t er Hel per instead.

By default all filters that deal with the Strings are case insensitive. To configure some filters to be different, use
the following:

nyLi st . addFi el d("country", "#Country").setlgnoreCase(false).like();

myLi st.addField("city", "#CGty").like();

nyLi st . addFi el d("address", "#Address").setlgnoreCase(true).like();
This can be explained following: Before adding a Like filter for the 'country' field, we switched to the case
sensitive mode. And before adding a filter for the 'address field, we switched to the case insensitive mode.
Thusthe city'sfilter is case sensitive as the country's but the address filter does ignore the case.

This stateis held by the Fi | t er Hel per and can be modified either by calling a method of the Fi I t er Hel per or
the Fi el dFi | t er Hel per . In such way, the following parameters can be set:

Case senditivity
By using set | gnor eCase(bool ean) one assigns new filters to ignore case (default) or not. This applies to
filters that use String comparison.

Strict/non-strict
By using set Stri ct (bool ean) one assigns new filtersto disallow equality or not. By default equality is not
allowed (strict). This appliesto filters such as GreaterThan, LowerThan, Range etc.

Sometimes tables need to contain a column (or more) that is not bound to specific model object field. One can
add such a column to the list structure like this:

myLi st. addEnpt yFi el d("choose", "#Choose");

The column gtill must have unique ID (e.g. “choose" in this case). The label for the column is optional. In
addition, this column would not be orderable as its values are not controlled by the Li st Wi get . However, this
column can be used for check boxes, radio buttons, links, etc.

Now, let's show which filters we have got:

Fi | t er Hel per ListFilter class Description
method
eq() Equal Fi |l ter Tests if the value of a certain list field is equal to the

value of a certain search form field. The filter is
disabled if the search field is blank.

eqConst () Equal Fi |l ter Tests if the value of a certain list field is equal to a
certain constant. Thisfilter is always enabled.

gt(), 1t() GreaterThanFil ter, Tests if the value of a certain list field is greater than
Lower ThanFi | t er (lower than) the value of a certain search form field.
Thisfilter isdisabled if the search field is blank.

gt Const (), Greater ThanFil ter, Tests if the value of a certain list field is greater than
| t Const () Lower ThanFi | t er (lower than) a certain constant. This filter, if used, is
aways enabled.

108 Aranea

6.2.4. Filtering

Fi | t er Hel per Li stFil ter class Description
method
like() Li keFil ter Tests if the pattern in a certain search form field

matches with the value of a certain list field. This
corresponds to the LI KE expression in SQL with some
modifications. By default, it takes '% and '*' symbols
as any-string wildcards and "', ' and '?' as
any-symbol wildcards. In addition, the pattern does
not have to match with the whole string (‘%' is
automatically added before and after the pattern

string). The wildcards and their automatic adding is

configured by the
org. araneaframework. uilib.list.util.like.LikeConfigurati
which is found from the Aranea

org. araneaf ramewor k. ui | i b. Confi gur ati onCont ext .
This filter is identical in memory-based and database
backend usage. This filter is disabled if the search

field is blank.

| i keConst () Li keFil ter Tests if a certain constant pattern matches with the
value of a certain list field. This filter is always
enabled.

startsWth(), | LikeFilter Thisisvery similar tothel i ke() constraint, and tests

endsW t h() if the list field value either starts or ends with the

user-provided pattern. The filter is disabled if the
search field is blank.

startsWthConst (Di,keFi | ter Tests if given constant pattern is either in the
endsW t hConst () beginning or in the end of the field value. This filter,
if used, is always enabled.

isNull (), Nul | Fi l ter Tests if the value of a certain list field is null (is not
not Nul | () null) if the value of a certain search form field equals
to aspecified vaue.

i sNul | Const(), NullFilter Tests if the value of a certain list field is null (is not
not Nul | Const () null). Thisfilter is aways enabled.
range() RangeFi | t er Tests if the value of acertain list field is between two

values of certain search form fields. The filter is
identical to the greater than or lower than filter in
case of one of the search fieldsis blank. Thisfilter is
disabled if both search fields are blank.

fi el dRangel nVal IReRegeja(RangeFi | t er Tests if two values of certain list fields are between
val ueRangel nFi el dRange() , two values of certain search form fields, vice-versa or
over | apRange() do they have a non-empty intersection. This filter is

disabled if both search fields are blank.

in() InFilter Testsif the value of alist field is among the values of
a MultiSelectControl. It does a case-sensitive search
for this.

sql Function() | Sql FunctionFilter Tests if the value returned from a certain SQL

Aranea 109

6.2.4. Filtering

Fi | t er Hel per Li stFil ter class Description
method

function is equal (or is greater than or is lower than)
to the value of acertain list field, search form field or
a constant. The arguments of the SQL function can
also be chosen among the values of list fields, search
form fields and constants. This filter cannot be used
memory-based. Thisfilter is always enabled.

By default the For nEl enent s added into the search form have the same identifiers as the list fields. Therefore
there can be only one search field per list field. If one would like to override the used Id for For nEl enent , any
filter could be added like following:

nmyLi st. addFi el d("country", "#Country").like();

nyList.getFilterHel per().like("country", "anotherCountry");
Thefirst line adds alist field ‘country' and a Like filter associated with it as well as a new For nEl enent with Id
of 'country'. The second line adds another Like filter associated to the list field ‘country' and a new For nEl enent
with Id of ‘anotherCountry'.

By adding afilter, the corresponding For nEl enent is automatically created and added to the search form of the
list. Now we cover the properties of the few For nEl enent describing their default values and showing how to
customize them:

Property Default value Customizing
Id Same asthelist field Id. Cdll
addField(...).<filter>("myCustom d");
Label Same as the label of the associated list field. Cdl
addFi el d(...).useCustonlLabel ("myCustonlLa
Control Is selected considering the type of the associated list | Call addFi el d(...).xxx(new
field: MyCust onControl ()):
Type Control
java.lang. String Text Contr ol

j ava. mat h. Bi gl nt eger, Nurber Contr ol
java.l ang. Long,

j ava. | ang. | nt eger,

java.l ang. Short,

java.l ang. Byte

j ava. mat h. Bi gDeci mal , | Fl oat Contr ol
j ava. |l ang. Doubl e,
java.l ang. Fl oat

Other subclasses of Fl oat Control
j ava. | ang. Nunber

java.util . Date, Dat eCont r ol
java.sql . Date

110 Aranea

6.2.5. Backend Data Provider

Property Default value Customizing
Type Control
java.sql.Tine Ti meContr ol
java. sql . Ti mest anmp Dat eTi neCont r ol
j ava. | ang. Bool ean CheckboxCont r ol
All others Text Cont r ol
Data Corresponds to the type of the associated list field. Cdl
addFiel d(...).useFi el dType(M/Type. cl ass)
Initial value Alwaysnul | to disablethefilter by default. After adding the field and the filter
call

nmyLi st. get Forn() . set Val ueByFul | Nare("fi e

custom nitial vValue); or add a
custom For nel enent .

Mandatory Alwayst al se as all search conditions are optional. After adding the field and the filter
cal

nyLi st . get Forn() . get El enent ByFul | Nane("f

or add a custom For nel enent .

FormElement See all properties above. To use a custom For nel enent , call
addFi el d(...).xxx(new
MyCust onFor nEl enent (...));. TO
disable adding it a all, cal
addFiel d(...)._xxx(); (notice
the underscore).

The xxx marks any filter adding method. As one can count, there are 6 overridden methods for each list filter: 2
versions for providing a custom Id or not and 3 versions for providing a custom For nEl enent, Control Of
neither of them. In addition there are methods that start with an _ for disabling adding a form element. Using
the Fi | ter Hel per instead of Fi el dFilterHel per IS analogous except all filter adding methods take the list
field 1d as the first argument in addition.

It's import to notice that xxxxConst methods do not create a form element because they are independent of the
search form at all - they are constant. However they can actually take a value Id for the defined constants as
well. These Ids can be used later to convert specific vaues when creating a database query. Of course
non-constant filters have the same Ids but just use them mainly to get values from the search form. xxxxConst
filters have 2 overridden add methods depending on whether the custom value Id is provided or not. By default
it'sthe same asthefield Id.

6.2.5. Backend Data Provider

Now that we have demonstrated defining lists and also creating MenoryBasedLi st Dat aPr ovi der, we will
discover using BackendLi st Dat aProvi der. The following example code should be in the same widget as
constructing of the related Li st W dget .

Aranea 111

6.2.5. Backend Data Provider

private class MyBackendLi st Dat aProvi der extends BackendLi st Dat aProvi der {
publ i c MyBackendLi st Dat aProvi der () {
super (true);

}
protected ListltensData getltenRange(ListQery query) throws Exception {

return | ookupMyService().findMWNModel (query);

}
}

The line super (true) constructs BackendLi st Dat aPr ovi der With cache enabled (only used when there are no
change in query). Notice that there is no association with any JavaBean class here. The method Li st | t ensDat a
get | temRange(Li st Query query) implements loading current item range according to the range indexes and
filtering and ordering conditions. org. ar aneaf r amewor k. backend. | i st. node. Li st uery and
or g. ar aneaf r amewor k. backend. | i st. node. Li st | t emsDat a may be thought as being input and output of each
list data query.

Li st Query isasimple JavaBean that holds the following properties:

List structure (since 1.1)
The structure of the list contains al the list fields and static information about the filtering and ordering. (It
is constructed once asthe Li st W dget is defined.)

List item range indexes
Thisis O-based start index and items count (Long objects) that define the range. By default, lists are shown
by pages. Although all items can be shown at once also. Then the start index is zero and items count is
omitted.

Filter and order info (since 1.1)
These contain the current filter and ordering data as instances of Map and O der I nf o.

Filter and order expressions
These could be thought as an abstraction of SQL expressions which are constructed using the info
described above (even the same instances). These expressions will be used in the WHERE and ORDER BY
clauses.
Generally, this whole object is just passed to org. ar aneaf r amewor k. backend. | i st . hel per. Li st Sql Hel per
class that is used to generate SQL statements and fetching the results from database. Latter is hold in
Li st | t ensDat a object which is asimple JavaBean that holds the following properties:

List itemsrange
Model objects that are the result of the query .

Total count
Total count (Long object) of the list. This is important information for navigating through the whole list.
Notice that this depends only on filtering conditions.

Notice that BackendLi st Dat aPr ovi der actually do not depend on using databases. It just provides a simple
query object and expects a simple result to be returned. Thus, you have the power to use it as you like. At the
same, Aranea provides a very useful class or g. ar aneaf ramewor k. backend. | i st . hel per. Li st Sql Hel per that
generate SQL statements and fetches the results from database. We strongly recommend it together with its
subclasses that support different database systems. Currently Oracle (Oracleli st Sql Hel per), Postgre
(Post greLi st Sql Hel per), and HSQL (Hsql Li st Sgl Hel per) databases are supported (they are used similarly
because they all extend Li st Sql Hel per).

The following example discovers the simplest usage of Li st Sql Hel per . The following code should be in a

112 Aranea

6.2.5. Backend Data Provider

service classinstead of previoudly discovered Widget:

public class MyService {
private DataSource dataSource;

public ListltensData fi ndM/Mbdel (ListQuery query) ({
Li st Sql Hel per hel per = new Oracl eLi st Sql Hel per (t hi s. dat aSour ce, query);

hel per. addMappi ng(" nanme", "NAME");
hel per . addMappi ng(" surnane", " SURNAMVE");
hel per. addMappi ng(" phone", "PHONE_NO');

hel per. set Si npl eSgl Quer y(" PERSON") ;
return hel per. execut e(MyModel . cl ass);

Method Li st I t emsDat a fi ndM/Model (Li st Query query) doesthe following:

Constructs and initializes the hel per
The line Li st Sql Hel per hel per = new O acl eLi st Sgl Hel per (t hi s. dat aSource, query) constructs
Or acl eLi st Sql Hel per - an Oracle specific Li st Sql Hel per - and passes it the Dat aSour ce and Li st Query
data.

Adds column mappings
Theline hel per. addMappi ng(“name", "NAME") definesthat identifier of column "name" will be converted
into " NAVE" when used in an SQL statement. There may be lot of differnece between JavaBean properties
names and database fields names. The same database identifier (" NaVE") is used when fetching data from
Resul t Set by default. This could also have another identifier set by providing it asthe third argument.

Provides the helper with asimple SQL query
Theline hel per . set Si npl eSgl Quer y(" PERSON') sets the whole SQL query with parameters using only the
given database table name. Filtering and ordering is added automatically according to the Li st Query data.

Executes the query and retrieve the data
The line return hel per. execut e(MyMbdel . cl ass) executes and retrieves data of both total count and
items range queries. The Resul t Set isread using the default BeanResul t Reader .

The following example discovers the custom usage of Li st Sql Hel per .

public class MyService {
private DataSource dataSource;

public ListltenmsData findMyMdel (ListQuery query) {
Li st Sql Hel per hel per = new Oracl eLi st Sql Hel per (t hi s. dat aSource, query);

hel per. addMappi ng(" nane", "NAME");
hel per. addMappi ng(" surnanme”, "SURNAME");
hel per . addMappi ng(" phone", "PHONE_NO');

StringBuffer s = new StringBuffer();
s. append(" SELECT ");

s. append(hel per. get Dat abaseFi el ds());

s. append(" FROM PERSONS");

s. append(hel per. get Dat abaseFilterWth(" WHERE ", ""));
s. append(hel per. get Dat abaseOrderWth(" ORDER BY ", ""));

hel per. set Sgl Query(s.toString());
hel per. addsSt at emrent Par ans(hel per. get Dat abaseFi | t er Parans());

Aranea 113

6.2.5. Backend Data Provider

hel per. addSt at ement Par ans(hel per. get Dat abaseOr der Par ans()) ;

return hel per. execut e(MyModel . cl ass);

}

Method Li st I t emsDat a fi ndMyModel (Li st Query query) doesthe following:

Constructs and initializes the hel per
The line Li st Sql Hel per hel per = new O acleLi st Sql Hel per (this.dataSource, query) constructs
O acl eLi st Sqgl Hel per - an Oracle specific Li st Sql Hel per - and passes it the Dat aSour ce and Li st Query
data.

Adds column mappings
Theline hel per. addMappi ng(“nanme", "NAME") definesthat identifier of column "name" will be converted
into " NAVE" when used in an SQL statement. There may be lot of differnece between JavaBean properties
names and database fields names. The same database identifier (" NAVE") is used when fetching data from
Resul t Set by default. This could also have another identifier set by providing it as the third argument.

Gets SQL substrings from the helper

The line hel per. get Dat abaseFi el ds() returns just the comma-separated list of database column
identifiers that were just defined in the mapping. This does not depend on the original set of list columns at
al. The line hel per. get Dat abaseFi | terWth(* WHERE ", "") returns the WHERE clause body with the
provided prefix and suffix. It returns an empty string if there is no filter condition currently set (it does not
mean there are no filters defined). Notice that we only deal with SQL strings here. As Li st Sql Hel per USES
Pr epar edSt at ement 0bjects to execute queries, there must be provided statement parameters in addition to
the SQL string. This generally provides better performance of executing similar queries.

Constructs SQL query string
StringBuf fer isused to construct the whole SQL query string. Notice that the helper does not construct it
totally by itself. This lends user more power for complex queries. It is very important that the constructed
query is for getting all rows that match with the current filter and order conditions, but not the range
conditions. Li st Sgl Hel per aways executes two queries. one for getting the items count and another for
getting the items range. Generally, both of these can be easily constructed from this one provided query.
This implementation depends on the database system and therefore the concrete Li st Sql Hel per subclass.

Gets SQL parameters from the hel per

The line hel per. get Dat abaseFi | t er Par ans() returns SQL parameters of WHERE clause or empty list if
there are none.

Provides the helper with the SQL query
The line hel per. set Sql Query(...) setsthe SQL string and the line hel per. addSt at ement Par ans(. . .)
adds the query parameters (Li st Sql Hel per USES Pr epar edSt at enent S). Of course, the order of parameters
must match with the SQL string.

Executes the query and retrieve the data
The line return hel per. execut e(MyMbdel . cl ass) executes and retrieves data of both total count and
items range queries. The Resul t Set isread using the default BeanResul t Reader .

ListSqglHelper mappings and converters

All Aranea List filters that are propagated with values from the filter form construct an expression chain. This
chain is built each time any condition is changed. E.g if one is searching for persons whose birthday is between

114 Aranea

6.2.5. Backend Data Provider

July 6th, 1950 and Sept 2nd, 1990 then there's one value 'Birthday' and two values 'July 6th, 1950' and 'Sept
2nd, 1990' which have 'Birthday_start' and 'Birthday_end' as names. Ordering the list is done the same. When
retrieving data from database all these information must be considered to build an appropriate query. Therefore
all these variables must be mapped to database fields. When reading the query results Bean fields must be
mapped to Resul t Set columns. In general, these Bean fields match exactly with the variables. But considering
more specific cases, they are not assumed to be the same.

Thefollowing list covers the terms that are used when configuring Li st Sql Hel per :

List field
Each list has a set of fields (or columns) that are displayed. All fields are listed up in the SELECT clause.
Some of them can be used for filtering and ordering as well. Field name can be e.g "birthday" or
"group.name”.

Expression value
Vaues are the temporary information in the list filtering. '1980-08-21' is a value. 'Birthday_start' is a name
of that value. In simple cases one list field matches with one value. In case of the range filter two different
values (start and end of the range) are used. Also one value can be used together with two or more fields. A
value identifier is used for optional converting before using it in a query. This is done by adding a
Convert er Object to Li st Sql Hel per . E.g. booleans have to be converted into numeric (O or 1) values.

Database column
Database column can be for example 'age’ or '‘company.name' as well as 'MAX(price)' or
'(SELECT(COUNT(*) FROM document WHERE userld = user.id)' (an inner SELECT) - any expression
that is part of a SQL string.

Database column alias
Database field alias is for example 'name, 'total_price' etc. It's just an identifier not a whole expression. In
Li st Sql Hel per one can assign an alias for each database field or have it automatically generated. The
result of aquery isatable - aResul t Set - which columns have the same names as the aliases in the query.
An dlias can also be used in a custom filter condition (WHERE clause) to identify the same database field
or expression that was added in the SELECT clause.

Li st Sql Hel per methods for configuring mappings:

Method Purpose

addMappi ng(String fieldName, String | Adds afield name to database column name and column alias
col umNane, String col utmAl i as) mapping. A given field is listed in the SELECT and is read from
the Resul t Set .

addMappi ng(String fieldName, String | Adds afield name to database column name and column alias

col utmNane) mapping. A given field is listed in the SELECT and is read from
the Resul t Set. The corresponding column alias is generated
automatically.

addDat abaseFi el dMappi ng(Stri ng Adds a field name to database column name and column alias

fiel dNane, String col utmNane, mapping. A given field is listed in the SELECT but is not read

String col umAl i as) from the Resul t Set .

addDat abaseFi el dMappi ng(Stri ng Adds a field name to database column name mapping. A given

fiel dName, String col umNane) field is listed in the SELECT but is not read from the Resul t Set .

The corresponding column alias is generated automatically.

addResul t Set Mappi ng(Stri ng Adds a field name to database column alias mapping. A given

Aranea 115

6.2.5. Backend Data Provider

Method Purpose

fiel dName, String col umAli as) field is not listed in the SELECT but is read from the Resul t Set .

Li st Sql Hel per methods for configuring converters:

Method Purpose

addDat abaseFi el dConverter(String Adds converter for expression value.
val ue, Converter converter)

addResul t Set Deconver t er For BeanFi el d(StAddg deconverter for Resul t Set column by list field that is
beanFi el d, Converter converter) mapped with that Column.

addResul t Set Deconvert er For Col unm(St r i iydds deconverter for Resul t Set column.
rsCol um, Converter converter)

ListSqglHelper naming strategies

Since Aranea MVC 1.1 ListSglHelper also support naming strategies. This means that one do not need to
define database column names and aliases for all list fields. Instead only list fields are listed up and they can be
transformed into database column names and aliases using a strategy.

A strategy is defined by the following interface. Nani ngSt r at egy.

public interface Nami ngStrategy {
String fiel dToCol umNane(String fiel dNane);
String fieldToCol umAlias(String fieldNane);

To set or get a strategy use methods Li st Sgl Hel per . set Nami ngSt r at egy(Nami ngSt rat egy nami ngSt r at egy)
Or Li st Sql Hel per. get Nami ngSt r at egy() respectfully.

The standard implementation St andar dNani ngSt r at egy adds underscores to all names (e.g. "firstName" ->
"first_name"). For an dias al dots are converted into underscores (eg. "parent.friend.age" ->
"parent_friend_age"). For a name all dots except the last are converted into underscores (e.g.
"parent.friend.age” -> "parent_friend.age", so "parent_friend" is expected to be atable aias).

If one wishes to define table aiases for the naming strategy Pref i xMapNani ngSt r at egy (enabled by default)
can be used. By using method addPrefi x(String fiel dNamePrefix, String col unnNamePrefix) one can
add a custom prefix for database columns and aliases. An instance of Prefi xMapNami ngStrategy can be
retrieved by method Li st Sql Hel per . get Pref i xMapNami ngSt r at egy() .

As naming strategies still expect a set of list fields to be defined there is a way to add list fields without any
mappings.

A set of fields are provided by following interface.

public interface Fields {
Col | ection get Nanes();
Col | ecti on get Resul t Set Nanes() ;

To set or get a fields provider use methods ListSql Hel per.setFields(Fields fields) or

116 Aranea

6.2.6. Quick Overview on How to Use

Li st Sql Hel per . get Fi el ds() respectfully.

A standard implementation st andar dFi el ds enablesto add fields using the following methods.

Method Purpose

addFi el d(String field) Adds afield by its name.

addFi el ds(String[] fields) Adds a set of fields by their names.
addFi el ds(Col | ection fields) Adds a set of fields by their names.
addFi el ds(C ass beand ass) Adds all the fields of the Bean class.

addFi el ds(Li stStructure structure) Adds all the fields defined in the list structure.

There are also corresponding methods to add fields using a prefix and methods to remove the fields (using a
prefix or not).

To get the st andar dFi el ds call Li st Sgl Hel per. get St andar dFi el ds() .

The following example shows how to just list up the fields (the corresponding column names and aliases are
generated by the naming strategy). Because the column "phone" has a "non-standard” column name, it is set

separately.
public class MyService {

public ListltenmsData findMyMddel (ListQuery query) {
Li st Sgl Hel per hel per = new O acl eLi st Sql Hel per (thi s. dat aSource, query);

St andar dFi el ds fi el ds = hel per. get St andar dFi el ds();
fiel ds. addFi el d(" name");
fiel ds.addFi el d("surnane");

hel per. addMappi ng(" phone", "PHONE NO');

hel per. set Si npl eSgl Quer y(" PERSON") ;
return hel per. execut e(MyModel . cl ass);

If al fields described for the Li st W dget should be used they can be added using the Li st St ruct ur e contained
intheLi st Query:
public class MyService {

public ListltensData fi ndM/Mbdel (ListQuery query) ({
Li st Sql Hel per hel per = new Oracl eLi st Sql Hel per (t hi s. dat aSource, query);

hel per . get St andar dFi el ds() . addFi el ds(query. getLi st Structure());
hel per. addMappi ng(" phone", "PHONE_NO');

hel per . set Si npl eSqgl Quer y(" PERSON") ;
return hel per. execut e(M/Model . cl ass);

6.2.6. Quick Overview on How to Use

Aranea 117

6.3. Selecting List Rows

Hereisaquick summary on how one can create and use alist, based on the material described in this chapter.

1. Create a data query. This basically means a service layer method that takes at least a Li st Query for its
argument, executes the database query, and returns Li st I t ensDat a. TO execute the query, one must also
specify the binding between model object fields and query result set fields.

2. Create a list widget. The (bean) list widget is used to define the columns and its labels together with
sorting and filtering information. Also, one must define a data provider — either memory-based or
back-end — that invokes the data query created previously. Note that the data provider implementation
provides the Li st Query object (containing information about the list, the constraints, and the rows
expected) for the query, and expects a Li st | t ensDat a Object as a result. Finally, the created list must be
added by its creator widget simply like following: t hi s. addW dget (" nyLi st", createdList);

3. Describethelayout in JSP. Here you can use the list tags provided by Aranea. These are described below.

6.3. Selecting List Rows

This section shows how a user can choose list rows with a check box or aradio button. The solution described
here is also integrated into Aranea lists, so it is quite easy to use. Firstly, Aranea provides a check box tag
(<ui : 1i st RowCheckBox/ >) and aradio button tag (<ui : | i st RowRadi oBut t on/ >) for list rows. These are meant
for the user to check multiple rows or just one row to submit them once the user clicks on a button. Usually,
these tags don't require any attributes (unless one needs to customize style or javascript), and work only with
thelist where they are used, even if there are multiple lists on the page.

In addition, Aranea provides a tag that selects or unselects all row check boxes in the list. It is named
<ui : | i st Sel ect Al | CheckBox/ >. Again, it requires zero configuration.

Now, these tags are useful because the next step is just getting the model objects from the list with the
Li st W dget . get Sel ect edRows () method. Or, if aradio button was used, and, therefore, only one selected row
is expected, the ListW dget. get Sel ectedRow() method can be used. If no rows were selected then
get Sel ect edRows() would return an empty list, and get Sel ect edRow() would return nul | .

There is also an advanced feature in case the list row check boxes are used. One can make the list remember the
selected rows in case the user switches between the (list) pages. It can be achieved by calling
l'i st.setSel ect FromMul ti pl ePages(true) (by defaultitisfal se). Once enabled, the list and the tags use the
equal s() method of the list row data object to know whether the row must be checked or unchecked.
Therefore, when the user goes back to the list page where some rows were selected before then they would still
appear selected.

Note

Enabling the sel ect From\ul ti pl ePages option, that makes list remember previously selected rows,
requires caution because the data model objects needs to have the equal s() to correctly compare them.
Otherwise, the "same" object could appear several times in the returned selected rows list. Thisis the
reason why it is turned off by default.

6.4. List JSP Tags

6.4.1. <ui:list>

Starts a list context. List view modél, list sequence view model and list id are made accessible to inner tags as
EL variables.

118 Aranea

6.4.2. <ui:listFilter>

Attributes

Attribute Required Description

id no List widget id.

varSequence no Name of variable that represents list sequence info (by default

listSequence).

Variables

Variable Description Type

list View model of list. Li st W dget . Vi envbdel
listSequence (unless View model of list sequence info. SequenceHel per . Vi ewibdel
changed with

var Sequence

attribute).

listld Id of list. String
listFullld Full id of list. String
Examples

<?xm version="1.0" encodi ng="UTF-8"?>
<ui:list id="list">

</ui:list>

6.4.2. <ui:listFilter>

Represents list filter. Introduces an implicit form (<ui:form>), so one can place form elements under it.

This tag has no attributes.

Examples

<?xm version="1.0" encodi ng="UTF-8""?>
<ui:list id="list">
<ui:listFilter>
<ui : row>
<ui:cell>
<ui:textlnput id="fieldlFilter"/>
</ ui:cell>

<ui :cell>
<ui:textlnput id="field2Filter"/>
</ ui:cell>

</ ui : row>
</ui:listFilter>
</ui:list>

Aranea 119

6.4.3. <ui:listFilterButton> and

6.4.3. <ui:listFilterButton> and <ui:listFilterClearButton>

<ui: l'i stFilterButton>renderslist'sfilter form filtering activation button and registers a keyboard handler, so
that pressing ENTER key in any filter form field activates list filtering. <ui : I'i st Fil ter d ear But t on> renders
list's filter form clearing button, pressing it sends server-side event that clears all active list filters.

Both of these tags must be used inside <ui : 1i st Fi | t er > tag.

Attributes

Attribute Required Description

renderMode no Possible values are but t on, i nput —filter button is rendered
with corresponding HTML tags, or enpty in which case JSP
author must provide suitable content for this tag by themself
(with an image, for example). Default rendermodeisbut t on.

onClickPrecondition no Precondition for deciding whether registered onclick event
should go server side or not. If left unspecified, this is
considered to bet r ue.

showL abel no Indicates whether button label is shown.Value should bet r ue

or fal se, default isf al se—using t r ue is pointless with these
particular tags, it only has some effect when specified
render Mode iSenpt y and tags body is left empty too.

Also have all common form element rendering attributes plus standard st yl e and st yl ed ass attributes.

Examples

<?xm version="1.0" encodi ng="UTF- 8" ?>

<ui:listFilter>

<ui : row>
<l-- Bunch of filter fields in cells -->
<ui : cel | >
<ui:listFilterButton/>
<ui:listFilterd earButton/>
</ui:cell>
<ui : row>
</ui:listFilter>

6.4.4. <ui:listRows>

Iterating tag that gives access to each row on the current list page. The row is by default accessible as EL
variable row.

Attributes
Attribute Required Description
var no Name of variable that represents individua row (by default

"I'OW").

120 Aranea

6.4.5. <ui:listRowButton>

Variables
Variable Description Type
row (unless changed Object held in current row. Qbj ect

with var attribute).

Examples

<?xm version="1.0" encodi ng="UTF- 8" ?>

<ui:list id="list">
<ui:listFilter>
<lui:listFilter>
<ui:li st Rows>
<ui : row>
<!-- In each row, object inthis list rowis accessible -->

<ui :cell>
<c:out value="${row. fieldl}"/>
</ui:cell>

<ui:cell>

<c:out value="${row. field2}"/>
</ ui:cell>

</ ui : row>

</ ui:listRows>
</ui:list>

6.4.5. <ui:listRowButton>

Represents an HTML form button (not tied to any Control or FornElenent). Default
styl eCl ass="ar anea- but t on", rendered with HTML <button ...>tag.

Attributes

Attribute Required Description

eventld no Event triggered when button is clicked.

id no Button id, allows to access button from JavaScript.

labelld no Id of button label.

onClickPrecondition no Precondition for deciding whether onclick event should go
server side or not. If left unspecified this is set to return
true;.

tabindex no This attribute specifies the position of the current element in

the tabbing order for the current document. This value must
be a number between 0 and 32767.

Also has standard st yl ed ass, updat eRegi ons and gl obal Updat eRegi ons attributes.

6.4.6. <ui:listRowLinkButton>

Aranea 121

<ui:listFilterClearButton>

Represents a HTML link with an ond i ck JavaScript event. Default styl eCl ass="ar anea- | i nk- button",

rendered with HTML tag.
Attributes
Attribute Required Description
eventld no Event triggered when link is clicked.
id no Link id, allowsto access link from JavaScript.
labelld no Id of link label.
onClickPrecondition no Precondition for deciding whether onclick event should go
server side or not. If left unspecified this is set to return
true;.
tabindex no This attribute specifies the position of the current element in

the tabbing order for the current document. This value must
be a number between 0 and 32767.

Also has standard st yl ed ass, updat eRegi ons and gl obal Updat eRegi ons attributes.

Examples

<?xm version="1.0" encodi ng="UTF- 8" ?>
<ui:list id="list">

<ui : i st Rows>
<ui : row>

<ui:cell>
<ui :listRowLi nkButton eventld="edit">
<ing src="editButton.png"/>
</ui:listRowLi nkButton>
</ ui:cell>

</ ui : row>

</ui:listRows>
</ui:list>

6.4.7. <ui:listRowCheckBox> And <ui:listRowRadioButton>

Represents a list row check box and a list row radio button that are bound to the list row. The
<ui : 1i st RowCheckBox> accompanies with the <ui : I i st Sel ect Al | CheckBox> that lets the user mark all list
row check boxes (in the same list) checked or unchecked.

Both <ui : i st RowCheckBox> and <ui : | i st RowRadi oBut t on> usually require no configuration. However, if
one needs to change something, the tags provide similar attributes.

Attributes

Attribute Required Description

value no (Check box only!) Specifies a custom vaue (when it is
submitted). Default value is sel ect ed.

labelld no Specifies a custom label for the check box or the radio button.

122 Aranea

6.5. Editable Lists

Attribute Required Description

disabled no Specifies whether the input should be rendered as disabled.
Default is active state.

onclick no Specifies custom oncl i ck event. Default is none.

accessK ey no Specifies custom acceskey (defined by HTML). Default is
none.

checked no Specifies the initial state of the check box or radio button.

Default is unchecked.

tabindex no This attribute specifies the position of the current element in
the tabbing order for the current document. This value must
be a number between 0 and 32767.

style no Inline (CSS) style for HTML tag.
styleClass no CSS classfor the tag.
onChangeEventld no The event handler name (in the parent widget of the list) that

wants to know when a row selection changes. The parameter
for the event handler isther owRequest | d.

eventPrecondition no A JavaScript event precondition on whether the onchange
event should go server-side.

See aso Section 6.3, “ Selecting List Rows’

6.5. Editable Lists

Edi t abl eLi st Wdget and Edi t abl eBeanLi st W dget are Li st W dget s Wrapped around For niLi st W dget (See
Section 5.3, “Form Lists’” about it) which gathers data with the help from Li st W dget .

Both editable list widgets have just one constructor and one additional getter (compared to Li st W dget):

publ i c Editabl eLi st Wdget (For mrRowHand| er rowHandl er);
publ i ¢ Editabl eBeanLi st W dget (For mrRowHandl er rowHandl er, O ass beand ass);

/1 gets the wapped formli st
publ i c BeanFor nii st W dget get FormnList();

Most important component of editable listsis For nLi st W dget 'S RowHand! er , refer to Section 5.3, “Form Lists’
about implementing that interface. Other than required implementation of RowHandl er, editable lists do not
differ from Li st W dget S.

public class Sanpl eEditabl eLi st Wdget {
private Editabl eBeanLi st Wdget |ist;

protected void init() throws Exception {
set Vi ewSel ect or ("sanpl eEdi t abl eLi st Vi ew');

list = new Editabl eBeanLi st W dget (bui | dFor nRowHandl er (), SoneBean. cl ass);
| i st.setDataProvider(buil dLi st DataProvider());
|ist.setOrderabl eByDefaul t(true);

Aranea 123

6.5. Editable Lists

/1 list has only two colums of which only one is editable
|'ist.addField("i mrutable", "#l nutabl eCol ummLabel ", fal se);
|'ist.addFiel d("mutable", "#Mitabl eCol ummLabel ").like();

addW dget (" sanpl eEdi t abl eLi st", list);
}

private FormRowHandl er bui | dFor MRowHandl er () throws Exception {
[l return fornmRowHandl er, see the formlist exanple

H

private private ListDataProvider buildListDataProvider() throws Exception {
[l return data provider
}

}

JSP view for this sample widget is presented below:

<ui : fornLi st id="sanpl eEditabl eLi st">
<!-- List filter definition, usual -->
<I-- Editable lists body -->
<ui : f or nLi st Rows>
<ui : row>
<ui :cel |l >
<I-- Row object is accessible as "row just as in lists -->
<c:out val ue="${row. i nutabl e}"/>
</ui:cell>
<ui :cel |l >

<I-- But the inplicit formtag for current row formis also present, so...

<ui : fornEl ement id="nutable">
<ui : text | nput/>
</ ui : f or nEl enent >
</ui:cell>
</ ui : row>
</ ui :fornmnLi st Rows>
</ ui: fornList>

Full editable list example is bundled with Aranea examples.

124

Aranea

Chapter 7. Other Uilib Widgets

7.1. Trees

7.1.1. TreeWidget & TreeNodeWidget

org. araneaf ramewor k. ui | i b. tree. TreeW dget allows representation of hierarchical datain a manner that has
become traditional in GUIs, as an expandable/collapsable tree. TreeW dget represents trees root node, which is
special in that it is not usually really rendered on-screen but serves as point where child nodes are attached.
Child nodes of Treew dget are TreeNodeW dget S acquired from associated Tr eeDat aPr ovi der or could be
attached by the developer. The Tr eew dget supports expanding and collapsing of all those nodes.

Tr eeDat aPr ovi der isasimple interface with ability to return data belonging to any given node of the tree.

public interface TreeDataProvider extends Serializable {

/**

* Returns a list of child nodes for specified parent node.
*/

Li st <Tr eeNodeW dget > get Chi | dr en(Tr eeNodeCont ext parent);
/**

* Returns whether the specified tree node has any chil dren.
*/

bool ean hasChi |l dren(Tr eeNodeCont ext parent);
}

As is apparent from the definition of TreeDat aProvi der, descendants of the Treew dget that are to be
presented in atree, must be of type Tr eeNodeW dget . Tr eeNodeW dget iSthe superclass of Treew dget that also
has child nodes and will be rendered too. Node rendering is done with display widget that is passed to
Tr eeNodeW dget in its constructor.

/** Childl ess collapsed node, rendered by display w dget. */

public TreeNodeW dget (W dget di spl ay);

/** Node with children. Expanded by default. */

public TreeNodeW dget (W dget di spl ay, List nodes);

/** Node with children, expand/collapse state can be set with corresponding flag. */

public TreeNodeW dget (W dget di spl ay, List nodes, bool ean coll apsed);
Display widget can be any widget that can render itself, it is rendered in the place of tree node instead of
TreeNodeW dget , which is just a data holder. Very often, display widget is BaseU W dget which renders itself
according to some JSP template. Tr eeNodeW dget does not accept independent Tr eeDat aPr ovi der , its children

are acquired from Tr eeW dget 'S Tr eeDat aPr ovi der .

TreeW dget enriches the Envi ronment with TreeCont ext. TreeNodeW dget enriches the Envi ronnment of its
display widget with Tr eeNodeCont ext . Through these contexts display widgets have access to owning tree node
and root of thetree.

7.1.2. Tree JSP tags

<ui:tree>
Renders tree with given id.

Attributes

7.2. Tabs

Attribute Required Description
id yes ID of the tree widget.
Examples

<?xm version="1.0" encodi ng="UTF-8" ?>
<ui:tree id="sinpleTree"/>

<l-- nothing nore required, nodes' display widgets will take care of rendering the tree nodes.>

7.2. Tabs

Tabs provide the tabbed interface for switching between different content.

7.2.1. TabContainerWidget

TabCont ai ner W dget manages widgets that are to be displayed and manipulated in separate tabs. It provides
basic operations like adding, removing, disabling, enabling and switching between tabs. Its main operation
mode is stateful, where switching between tabs preserves state in inactive tabs. It can be made to operate
statelessly (or with custom state management) by constructing new tab with W dget Fact ory instead of W dget .

Following methods are available for adding tabs:

void addTab(String id, String |abelld, Wdget contentWdget);

voi d addTab(String id, Wdget |abel Wdget, W dget content W dget);

voi d addTab(String id, String |abelld, WdgetFactory content Wdget Factory);

voi d addTab(String id, Wdget |abel Wdget, W dgetFactory content W dget Factory);

And for common tab operations:

bool ean renmoveTab(String id);
bool ean di sabl eTab(String id);
bool ean enabl eTab(String id);
bool ean sel ect Tab(String id);

For its children, TabContainerWidget is accessible from Envi r onment as TabCont ai ner Cont ext .

7.2.2. Tab JSP tags

<ui:tabContainer>

Opens the tab container context and renders the labels for all tabsinside this container.

Attributes
Attribute Required Description
id yes ID of the tab container widget.

<ui:tabBody>

126 Aranea

7.3. Context Menu

Renders the body of currently active (selected) tab. Must be used inside tab container context.

<ui:tabs>

Renders specified tab container fully—writes out tab labels and active tab's content.

Attributes
Attribute Required Description
id yes ID of the tab container widget.

Usage of tab tags in JSP templates.

<ui :tabs i d="tabCont ai ner"/>

<l-- equivalent to previous, but one could add custom content before and after tab body -->
<ui : t abCont ai ner i d="t abCont ai ner">

<ui : t abBody/ >
</ ui : t abCont ai ner >

7.3. Context Menu

Context menu is the menu that pops up when mouse right-click is made on some item (widget) in an UI.

7.3.1. ContextMenuWidget & ContextMenultem

Widget that represents context menu content is called Cont ext MenuW dget . By convention, it is usually added
to component hierarchy as a child of the widget for which it provides context menu.

wi dget Wt hCont ext Menu. addW dget (" cont ext menu", new Cont ext MenuW dget (...));

Cont ext MenuW dget sole constructor has a single Cont ext Menultem parameter. Cont ext Menul tem iS a
hierarchical container for menu items, consisting of menu entries and entry labels. There are two types of menu
entries. Cont ext MenuEvent Entry and Cont ext MenuAct i onEnt ry —which respectively produce events (see
Section 2.7.2, “Event Listeners’) or actions (see Section 2.7.3, “Action Listeners’) upon selection of context
menu item. Except for produced event type, these entries are constructed identically. Creating context menu
entry which tries to invoke widget event listener of somew dget without supplying any event parametersis done
asfollows:

Cont ext MenuEntry entry = new Cont ext MenuEvent Entry("soneEvent", sonmeW dget);

When menu entry produced event requires some parameters, javascript function must be defined that returns
desired parameters. When left undefined, function() { return null; } isused. Sample javascript function
which always returns value of some fixed DOM element as event parameter looks like this:

var cont ext MenuEvent Par anet er Suppl i er = function() {
/'l make sure that function call was really triggered by nenu sel ection
i f (araneaCont ext Menu. get Tri ggeri ngEl enent ()) {
/1 supply value of DOM el enent 'soneEl enent' as event paraneter
return $(' soneEl enent'). val ue;

}

return null;

H

Aranea 127

7.3.2. Rendering context menus with JSP template

Corresponding menu entry which detects and submits event parametersis created similarly to previous:

Cont ext MenuEntry entry = new Cont ext MenuEvent Entry("soneEvent", sonmeW dget, "contextMenuEvent Paranet el

Whol e construction of single multi-element and multi-level Cont ext Menuw dget will look similar to this:

Cont ext Menul tem root = new Cont ext Menul ten() ;
/1 entry that produces event when clicked on
Cont ext Menultem firstEntry =
new Cont ext Menul t em(
getL1OnCt x() .| ocal i ze("soneLabel "), // | abel
new Cont ext MenuEvent Entry("sonmeEvent", this));
/1 entry that just functions as subnenu
Cont ext Menul t em secondEntry = new Cont ext Menul t em(get L10nCt x() .| ocal i ze(" submenu"));
/] action producing entry in a submenu
Cont ext Menultem thirdEntry =
new Cont ext Menul t em(
get L10OnCt x() .| ocal i ze("someQ her Label "),
new Cont ext MenuActi onEntry("sonmeAction”, this, "contextMenuActionParaneterSupplier"));
secondEntry. addMenul ten(thirdEntry);
root . addMenul tem(firstEntry);
root . addMenul t em(secondEntry);

7.3.2. Rendering context menus with JSP template

To get functional context menus on client-side, template must define the sections belonging to a widget which
has the context menu and register the context menu. Context menus are known to work in Internet Explorer and
MozillaFirefox browsers.

<ui:contextMenu>

Registers the context menu in current template for widget with i d.

Attributes
Attribute Required Description
id yes ID of the Cont ext MenuW dget
updateRegions no Regions which should be updated when context menu event
has been processed.
global UpdateRegions no Global regions which should be updated when context menu

event has been processed.

As one widget might be rendered in separate sections in a template, al these sections need to be identified so
that correct context menu can be detected at all times. This is done with <ui : wi dget Mar ker > tag surrounding
the widget sections.

<ui:widgetMarker>

Defines the surrounded section as belonging to a widget with i d. It writes out some HTML tag with cl ass
attribute value set to wi dget Mar ker .

Attributes

128 Aranea

7.4. Partial Rendering

Attribute Required Description

id yes ID of the widget which section is surrounded by this marker
tag.

tag no HTML tag to render the marker with. Default isSHTML di v.

Example: JSP template containing context menu.

<!-- Defines context nenu for a ListWdget "list" -->
<ui:list id="list">
<ui:listFilter> ... </ui:listFilter>
<ui:li st Rows>
<!-- marker surrounding widget with identifier "list" -->

<ui : W dget Marker id="list" tag="tbody">
<ui:row i d="${listFullld}.rows{rowRequestld}">

<l-- cells -->
</ ui : row>
</ ui : wi dget Mar ker >
</ ui:listRows>
<I-- Context nenu wi dget with conventional id -->
<ui : cont ext Menu i d="Ili st. cont ext nenu"/>
</ui:list>

7.4. Partial Rendering

Imagine that you have a big web page with input form, and you want certain input controls to update something
on that page as user changes the value of the control. Now, would it be efficient if the value changes, its
onchange event submits the data so that an onChangeEvent Li st ener could read it and return the same page
with slight changes? The main problem here is that a small change should not force the user wait until the page
reloads. Here is the part where partial rendering comesin.

Note

Partial rendering is more thoroughly described by Alar Kvell's bachelor thesis Aranea Ajax
[http://www.araneaframework.org/docs/kvell-aranea-gjax.pdf]. This section concentrates mostly on
how a programmer can make partial rendering work.

7.4.1. The Two Steps

First of all, a page must have a part (parts) that needs to be updated when an event occurs. These regions are
marked with the <ui : updat eRegi on> tag by also indicating its ID to reference it | ater.

Note

It is not possible to update an HTML table cell. One needs to update the entire row by using the
<ui : updat eRegi onRows> tag.

Next, one needs to specify the updat eRegi ons attribute of the input control that has an event registered. The
attribute value should contain a comma-separated list of update region 1Ds that need to be update due to the
event. It is important for this value to be specified, because otherwise the entire page would be posted to the
server.

Aranea 129

7.4.2. Partial Rendering Example

When the input control has the updat eRegi ons attribute defined, Araneawill use Ajax to send the form data to
the server, invoke the onEvent Li st ener associated with the event, and return the parts of the pages defined as
update regions. Finally, the script on the client side will replace the update regions on the page with the
received ones. For everything else on the same page, it will remain the same.

Note that these two steps described above are all that need to be taken to make partial rendering possible with
Aranea.

7.4.2. Partial Rendering Example

Now let's take alook at a short example where partial rendering is used. The following is the code snippet from
Aranea demo application component Easy AJAX w/ 'update regions.

<ui : r ow>
<ui : for nEl enent i d="beast Sel ecti on">
<ui:cell styleC ass="nanme">
<ui : | abel />
</ui:cell>
<ui:cell>
<ui : sel ect updat eRegi ons="aj axBeast s"/ >
</ ui:cell>
</ ui : f or nEl enent >
</ ui : row>

<ui : updat eRegi onRows i d="aj axBeast s" >
<c:if test="${not enpty form el enents[' concreteBeastControl"']}">
<ui : row>
<ui : fornEl ement i d="concr et eBeast Control ">
<ui:cell styleC ass="centered- name">
<ui : | abel />
</ ui:cell>
<ui : cel | >
<ui : checkboxMul ti Sel ect type="vertical" />
</ui:cell>
</ ui : f or nEl enent >
</ ui:row>
</fc:if>
</ ui : updat eRegi onRows>

In the example, you can see that it does not matter in which order the update region is declared and referenced.
Also, because data (form elements) is displayed using table rows, we must use <ui : updat eRegi onRows> tag
here to make it work. However, the most important part of this exampleisthat the <ui : sel ect > control defines
the update region it wishes to update.

Note

Currently file upload inputs don't work with update regions because the JavaScript cannot read the
unsubmitted file and seriaize it to send it to the server. Therefore, if you provide the updat eRegi ons
attribute for a file upload input, the file won't reach the server. We hope to find a solution to this
limitation in near future.

130 Aranea

Chapter 8. Third-party Integration

8.1. Spring Application Framework

8.1.1. BeanFactory, ApplicationContext, WebApplicationContext

Ar aneaSpri ngDi spat cher Servl et Will always add a BeanFactory to the environment. It can be retrieved as
follows:

BeanFactory beanFactory =
(BeanFact ory) get Envi ronnment (). get Entry(BeanFactory. cl ass)

Or using the method get BeanFact ory() in BaseUl W dget . By default it will contain only beans configured by
Aranea, however if one also uses usual Spring configuration:

<cont ext - par an»
<par am nane>cont ext Confi gLocat i on</ par am nane>
<par am val ue>
/ VEB- | NF/ ser vi ces. xml
</ par am val ue>
</ cont ext - par an®

<li stener>
<l i st ener-class>
org. springframewor k. web. cont ext . Cont ext Loader Li st ener

</listener-class>
</li stener>

Then the AraneaSpri ngDi spat cher Servl et will integrate with Spring and make BeanFact ory provide all of
the configure beans, aswell as add Appl i cati onCont ext and WebAppl i cat i onCont ext to the environment.

Warning

AraneaSpri ngDi spat cher Servl et must be initialized after Spring context loader listener or servlet to
integrate with Spring successfully.

8.1.2. Spring Localization Filter

Javaclass: | SpringLocal i zationFilterService

Default configuration | -
name:

Provides. | Local i zati onCont ext , Spri ngLocal i zat i onCont ext

Dependson: WebAppl i cati onCont ext

Provides localization services, see Section 2.8.2, “LocalizationContext”. The difference from the usual
localization filter is that this one delegates the actual localization to a Spring MessageSour ce.

8.1.3. Widget Dependency Injection

8.1.3. Widget Dependency Injection

Aranea does not by default support configuring widgets with Spring, as they are assumed to be created by the
programmer and their life-cycle is managed by Aranea. The main problem however is that widgets are assumed
to be serializable and Spring beans are often not (especially since they often are proxies with references to bean
factory and so on). As a solution we provide a utility class SpringlnjectionUtil that allows to inject Spring
beans after a following convention:

i nj ect SomeSpri ngBean(| SomeBean soneBean) {
t hi s. soneBean = soneBean;

}
This method is similar to a setter method, but starts with "inject”. The remainder of the method name is
interpreted as the name of Spring bean to be injected, with the first |etter lowercase (in the case of our example

bean named "someSpringBean" would be injected). To actually inject the beans to all similarly called methods
in the current widget call i nj ect Beans() inwidgeti ni t () method asfollows:

protected init() {

SpringlnjectionUtil.injectBeans(getEnvironnent(), this);

}
Y ou may even put this call into the base widget of your application to ensure that all application widgets would
get their dependencies injected.
Note

The injected bean must be an interface, as Aranea will construct an indirection proxy. This will ensure
that the referenced object will be serializable (and small for that matter), but will also introduce a small
performance penalty (we believe to be negligible next to the proxies of Spring itself).

132 Aranea

Chapter 9. Javascript Libraries

9.1. Third-party Javascript Libraries

Aranea distribution includes some third party Javascript libraries. Most of these are not needed for using
Araneafunctionality, but extend the functionality of both framework and UiLib.

9.1.1. Behaviour (http://bennolan.com/behaviour/)
Neat little library allowing usage of CSS selectors for applying behaviour to HTML page elements. It is

required for full function of Aranea pages rendered with Aranea JSP tags. It has been customised to use
Prototype library selector functions and allow behaviour addition for subtrees (without processing whole page).

¢ keyboard handlers are registered for form elements.
« addition of urls (<href="...") to page elements that allow cloning of the session thread (opening link in new
window—and in different session thread).

9.1.2. The DHTML Calendar (http://www.dynarch.com/projects/calendar/)

Nice DHTML calendar, required if one wantsto use Aranea JSP < ui:datelnput> or <ui:dateTimel nput> tags.

9.1.3. Prototype (http://www.prototypejs.org/)
Prototype is a JavaScript framework that aims to ease development of dynamic web applications. Aranea partial

rendering model uses its XMLHttpRequest facilities for generating requests and defining update callbacks. It is
also needed for using Uilib's AutoCompleteTextControl and action-enabled TreeWidget components.

9.1.4. script.aculo.us (http://script.aculo.us/)
script.aculo.us provides easy-to-use, cross-browser user interface JavaScript libraries. Only subset of

script.aculo.us libraries are included— JSP tags that depends on them are <ui:autoCompleteTextlnput> and
<ui:tooltip>.

9.1.5. TinyMCE (http://tinymce.moxiecode.com/)

TinyMCE is a platform independent web based Javascript HTML WY SIWYG editor control. Required for
using Aranea JSP < ui:richTextarea> tag.

9.1.6. Prototip (http://www.nickstakenburg.com/projects/prototip/)

Prototip allows to easily create both simple and complex tooltips using the Prototype javascript framework. If
one also uses Scriptacul ous some hice effects can be added. Thisis required when using JSP <ui:tooltip> tag.

9.1.7. ModalBox (http://www.wildbit.com/labs/modalbox/)

ModaBox is a JavaScript technique for creating modern modal dialogs or even wizards (sequences of dialogs)
without using conventional popups and page reloads.

http://bennolan.com/behaviour/
http://www.dynarch.com/projects/calendar/
http://www.prototypejs.org/
http://script.aculo.us/
http://tinymce.moxiecode.com/
http://www.nickstakenburg.com/projects/prototip/
http://www.wildbit.com/labs/modalbox/

9.2. Aranea Clientside Javascript

9.1.8. log4javascript (http://www.timdown.co.uk/log4javascript/)

Note that this is now deprecated in favour of Firebug's [http://www.getfirebug.com/] built in logging facilities.
Logging to Firebug console is enabled with AraneaPage.setFirebuglogger().

logdjavascript is a JavaScript logging framework similar to Java logging framework logdj. Include
logdjavascript scripts and call AraneaPage.setDefaultLogger() to receive a popup window where Aranea JS
debug output is logged. When Firebug [www.getfirebug.com] is active, its logging to its console can be
activated with AraneaPage.setFirebuglLogger ().

9.2. Aranea Clientside Javascript

Aranea uses javascript to do form submits. This provides AJAX enabled webapps and more control over form
submitting logic. Each page served by Aranea has associated AraneaPage object:

/* AraneaPage object is present on each page served by Aranea and contai ns conmobn
* functionality for setting/getting page related variables, events and functions. */
function AraneaPage() ({
/* Cetters and setters for URL of aranea dispatcher servlet serving current page. */
function getServl et URL();
function setServlet URL(url);

/* Shoul d act as HttpServl et Response. encodeURL(), but on client-side. */
function encodeURL(url);

/** 1 ndi cates whether the page is conpletely |oaded or not. Page is considered to
* be | oaded when all system onl oad events have been executed */

function isLoaded();

/** Sets | oading status of the page */

functi on setLoaded(| oaded);

/* Sets the javascript |ogger that does not output anything. */
function set DutmyLogger () ;

/* Sets the javascript |ogger which logs to firebug console. */
function setFirebuglLogger();

/* Returns the server-side reported | ocal e (AranealLocale). */
function getLocal e();

/** 1 ndi cates whether sone formon page is (being) submtted already
* by traditional HTTP request. Wen formis already being submtted,
* submit functions will not resubmt it. */
function isSubmtted();
/* Custom submit functions using plain HTTP request should call this before submt. */
function set Submi tted();

[** @eturn systenmfForm HTML form consi dered active by this AraneaPage
* @ince 1.1 */

function get Systenforn();

/**

* Sets the active systemformin this AraneaPage

* @ince 1.1 */

functi on set SystenfForm(_syst enfForn;

/** Add events that should be executed upon page |oad/unload to execution queue. */
functi on addSyst enLoadEvent (event);

functi on addd i ent LoadEvent (event);

functi on addSyst emUnLoadEvent (event);

/** Called on page | oad, executes registered system-- after which page is considered
* | oaded and client |oad events are executed too. */

function onl oad();

/** Call ed on page unload (takes place after plain HTTP Request or navigation to

134 Aranea

http://www.timdown.co.uk/log4javascript/
http://www.getfirebug.com/
www.getfirebug.com

9.2. Aranea Clientside Javascript

* another URL), executes registered unload events. */
function onunl oad();

/** Adds cal | back executed before next form submt. */
function addSubmi t Cal | back(cal | back) ;

/** Add cal | back executed before formwi th given id is submtted next time. */
functi on addSubnit Cal | back(systenform d, call back);

/** Executes all callbacks that should run before submtting the formw th given id.
* Executed cal | backs are renoved. */
function executeCal | backs(systenform d);

/**

* Chooses appropriate submtting nmethod and subm ttable formgiven the HTM. el ement
* that initiated the submt request. Applies the appropriate paramater val ues

* and submts the systenfForm which owns the element. This is one of the nost often
* used functions here. */

function event (el enent);

/**

* This function can be overwitten to support additional subnmit nethods.
* It is called by event() to determine the appropriate form submtter.
*/

function findSubmtter(el enent, systenfForm;

/** Returns the id of a conponent who shoul d receive events generated by DOM el enent.
* @ince 1.1 */
functi on get Event Tar get (el ement) ;

/** Returns event id that should be sent to server when event(elenent) is called.
* @ince 1.1 */
function getEventld(el enent);

/** Returns event paraneter that should be sent to server when event(elenent) is called.
* @ince 1.1 */
functi on get Event Par an{ el enent) ;

/** Returns update regions that should be sent to server when event(elenment) is called.
* @ince 1.1 */
functi on get Event Updat eRegi ons(el enent) ;

/** Returns closure that shoul d be eval uated when event (el enent) is called and
* needs to deci de whether server-side event invocation is needed.
* @ince 1.1 */

functi on get Event PreCondition(el enent);

[** Anot her submit function, takes all parans that are possible to
use Wi th Aranea JSP currently.
@ar am systenfForm formthat will be submitted
@aram event |l d event identifier sent to the server
@ar am event Target event target identifier (w dget id)
@ar am event Par am event paranet er
@ar am event Precondi tion closure, submt is only performed when its evaluation returns true
@ar am event Updat eRegi ons identifiers for regions that should be regenerated on server-side */
function event_6(systenform eventld, eventTarget,
event Param event Precondi tion, eventUpdat eRegi ons);

b I

/**

* Returns URL that can be used to invoke full HTTP request with some predefined request paraneters.
* @aramtopServiceld server-side top service identifier

* @aram threadServiceld server-side thread service identifier

* @aram araTransactionld transaction id expected by the server

* @aram extraParans nore paraneters, i.e "pl=v1l&p2=v2"

*/

function get Submit URL(topServiceld, threadServiceld, araTransactionld, extraParans);

/**

* Returns URL that can be used to nmake server-side action-invoking
* XMLHtt pRequest w th sone predefined request paraneters.

Aranea 135

9.2. Aranea Clientside Javascript

@ar am systenfForm form contai ning i nformati on about top service and thread service identifiers
@aram actionld action identifier sent to the server
@aram actionTarget action target identifier (w dget id)
@ar am act i onParam acti on paraneter
@ar am sync whether this action is synchronized or not
@ar am extraParans nore paraneters, i.e "pl=v1&p2=v2"
/
functi on getActionSubm t URL(systenForm actionld, actionTarget, actionParam sync, extraParans);

E I S

*

/
I nvokes server-side action |istener by perform ng XMLHt t pRequest with correct paraneters.

@ar am el enent unused currently, should be set to DOM el enent that triggers action invocation
@aram actionld action identifier sent to the server

@aram actionTarget action target identifier (w dget id)

@ar am acti onParam acti on par anet er

@ar am acti onCal | back cal | back executed when action response arrives

@ar am options XM.Htt pRequest options, see: http://prototypejs.org/api/ajax/options

@ar am sync whether this action is synchronized on server-side or not (default is synchronized)
@ar am extraParans nore paraneters, i.e "pl=vl&p2=v2"

L R I R N N

~

function action(el enent, actionld, actionTarget, actionParam actionCallback, options, sync, extraP:

*

/
I nvokes server-side action |istener by perform ng XM.Ht t pRequest with correct paraneters.
@aram systenForm formthat triggers the action request

@aram actionld action identifier sent to the server

@aram acti onTarget action target identifier (w dget id)

@ar am acti onParam acti on paranet er

@ar am acti onCal | back cal | back executed when action response arrives

@ar am options XM.Htt pRequest options, see: http://prototypejs.org/api/ajax/options

@ar am sync whether this action is synchronized on server-side or not (default is synchronized)
@ar am extraParans nore paraneters, i.e "pl=v1&p2=v2"

L S R T B I

~

function action_6(systenfForm actionld, actionTarget, actionParam actionCallback, options, sync, e

/**

* Provides preferred way of overridi ng AraneaPage object functions.

* @aram functi onName nanme of AraneaPage function that should be overridden.
* @aramf replacenent function

*/

function override(functionNanme, f);

/** Returns the flag that determ nes whet her background validation is used by
* for all forms (FormWN dgets) in the application. */

function get BackgroundVal i dation();

/** Sets the background formvalidation flag on client side. Note that server-side
* nmust have identical setting for these settings to have effect. */

function setBackgroundVal i dati on(useAj ax);

/ *
Add a handl er that is invoked for custom data region in updateregi ons AJAX
request. process function will be invoked on the handl er
during processing the response. Data specific to this handler will be

passed as the first paranmeter to that function (String).
@ar am key update region type identifier
@ar am handl er cal | back that shoul d process regi on content

@ince 1.1

L R S O T R R B

~

functi on addRegi onHandl er (key, handl er);

/**

* Process response of an updateregi ons AJAX request. Should be called only
* on successful response. Invokes registered regi on handl ers.

*

* @ince 1.1

*/

functi on processResponse(responseText);

/**

136 Aranea

9.2. Aranea Clientside Javascript

* Exception handler that is invoked on Aj ax. Request errors.
*

* @ince 1.1

=

function handl eRequest Excepti on(request, exception);

/**

* Create or show | oadi ng nessage at the top corner of the docunent. Called
* pbefore initiating an updateregi ons Aj ax. Request.
*
* @ince 1.1
*/
functi on showLoadi ngMessage() ;

/**

* Hide | oading nessage. Called after the conpletion of updateregi ons Aj ax. Request.
*

* @ince 1.1

*/

function hi deLoadi ngMessage();

/**

* Build | oadi ng nessage. Called when an existing nessage el enent is not
* found.

* @ince 1.1

*/

function buil dLoadi ngMessage();

*

/
Perform posi tioni ng of |oading message (if needed in addition to CSS).
Cal | ed before making the nessage el ement visible. This inplenmentation
provi des workaround for |E 6, which doesn't support

position: fixed CSS attribute; the element is manual ly

positioned at the top of the docunent. If you don't need this, overwite
this with an enpty function:

Ar aneaPage. posi ti onLoadi ngMessage = Prot ot ype. enpt yFuncti on;

@ince 1.1

I R S . R S N B

~

functi on positionLoadi ngMessage();

/**
* Adds keepalive function f that is executed periodically after tine
* m|liseconds has passed
*/

functi on addKeepAlive(f, tine);

/** Clears/renmoves all registered keepalive functions. */
function cl ear KeepAlives();

/** Logs nmessage on DEBUG |l evel, if |logger is present. */
functi on debug(nmessage);

}

/** Random request id generator. Sent only with XM.HttpRequests which apply to certain update regions.
* Currently only purpose of it is easier debugging (identifying requests). */
AraneaPage. get RandonRequest I d() = function() { /* ... */ };

/* Returns a default keepalive function -- to make periodical requests to expiring thread
* or top level services. */
Ar aneaPage. get Def aul t KeepAl i ve = function(topServiceld, threadServiceld, keepAliveKey);

/** Searches for wi dget marker around the given el enent.
* |f found, returns the marker DOM el enent, else returns null. */
Ar aneaPage. fi ndW dget Mar ker = functi on(el emrent);

/** Searches for systemformin HTM. page and registers it in
* current AraneaPage object as active systenfForm
* @aram el enent unused, could be set to sone DOM el enment that definitely falls inside the system f«

Aranea 137

9.2. Aranea Clientside Javascript

* @ince 1.1 */
Ar aneaPage. fi ndSyst enfForm = functi on(el enent);

/** Page initialization function, should be called upon page |oad. */
AraneaPage.init();

/* Aranea page object is accessible in two ways -- _ap and araneaPage() */
_ap = new AraneaPage();
function araneaPage() { return _ap; }

138 Aranea

	Aranea—Java Web Framework Construction and Integration Kit
	Table of Contents
	Chapter 1. Introduction
	1.1. Overview
	1.2. Organization

	Chapter 2. Components, Widgets and Services
	2.1. Introduction
	2.2. Coding Conventions
	2.2.1. Checked versus Unchecked Exceptions
	2.2.2. Public versus Framework Interfaces
	2.2.3. Components and Their Orthogonal Properties

	2.3. Components and Environment
	2.3.1. Composite Pattern and Paths
	2.3.2. Environment
	2.3.3. Messaging Components
	2.3.4. State and Synchronization

	2.4. InputData and OutputData
	2.4.1. Extensions
	2.4.2. HttpInputData and HttpOutputData

	2.5. Services
	2.5.1. Filter Services

	2.6. Widgets
	2.6.1. ViewModel and Rendering

	2.7. Application Widgets
	2.7.1. Children Management
	2.7.2. Event Listeners
	2.7.3. Action Listeners
	2.7.4. Environment
	2.7.5. Overridable Methods
	2.7.6. InputData and OuputData
	2.7.7. View Model and Rendering
	2.7.8. Putting It All Together

	2.8. Standard Contexts
	2.8.1. MessageContext
	2.8.2. LocalizationContext
	2.8.3. FlowContext
	2.8.4. PopupWindowContext
	2.8.5. OverlayContext
	2.8.6. MenuContext
	2.8.7. ConfirmationContext
	2.8.8. ManagedServiceContext, ThreadContext, and TopServiceContext

	Chapter 3. Framework and Configuration
	3.1. Overview
	3.2. Application Configuration
	3.2.1. web.xml
	3.2.2. aranea-conf.xml
	3.2.3. aranea-conf.properties
	3.2.4. AraneaSpringDispatcherServlet
	3.2.5. Extending Dispatcher
	3.2.6. ConfigurationContext

	3.3. Framework Assembly
	3.4. Framework Configuration
	3.5. Framework Components
	3.5.1. Localization Filter
	3.5.2. AJAX Update Regions Filter
	3.5.3. Environment Configuration Filter
	3.5.4. Critical Exception Handler
	3.5.5. File Uploading Filter
	3.5.6. HTTP Response Headers Filter
	3.5.7. JSP Configuration Filter
	3.5.8. User Messages Filter
	3.5.9. Popup Windows Filter
	3.5.10. Component Serialization Auditing Filter
	3.5.11. Statistics Logging Filter
	3.5.12. Browser Window Cloning Filter
	3.5.13. Multi-submit Protection Filter
	3.5.14. Class Reloading Filter
	3.5.15. Client State Serialization Filter
	3.5.16. Extension File Import Filter
	3.5.17. Bookmarking/URL Mounting Filter
	3.5.18. Root Flow Container
	3.5.19. Overlay Container
	3.5.20. System Form Field Storage Filter
	3.5.21. Window Scroll Position Filter

	3.6. Other
	3.6.1. Extension Resources

	Chapter 4. JSP and Custom Tags
	4.1. Aranea Standard Tag Library
	4.2. System Tags
	4.2.1. <ui:importScripts>
	Attributes
	Examples

	4.2.2. <ui:importStyles>
	Attributes

	4.2.3. <ui:body>
	Attributes

	4.2.4. <ui:systemForm>
	Attributes
	Variables

	4.2.5. <ui:messages>
	Attributes
	Examples

	4.3. Basic Tags
	4.3.1. <ui:attribute>
	Examples

	4.3.2. <ui:elementContent>
	4.3.3. <ui:element>
	Examples

	4.3.4. <ui:keyboardHandler>
	Examples

	4.3.5. <ui:eventKeyboardHandler>
	Examples

	4.4. Widget Tags
	4.4.1. <ui:widgetContext>
	Attributes
	Variables
	Examples

	4.4.2. <ui:widget>
	Attributes
	Variables
	Examples

	4.4.3. <ui:widgetInclude>
	Attributes
	Examples

	4.4.4. <ui:globalWidgetInclude>
	Attributes

	4.5. Event-producing Tags
	4.5.1. <ui:eventButton> and <ui:eventLinkButton>
	Attributes
	HTML, Styles and JavaScript
	Examples

	4.5.2. <ui:onLoadEvent>
	Attributes
	Examples

	4.5.3. <ui:registerPopups>
	Attributes
	Examples

	4.6. HTML entity Tags
	4.6.1. Predefined entity tags

	4.7. Putting Widgets to Work with JSP
	4.8. Layout Tags
	4.8.1. <ui:layout>
	Variables

	4.8.2. <ui:row>
	Variables

	4.8.3. <ui:cell>
	Examples

	4.8.4. <ui:updateRegion> and <ui:updateRegionRows>
	
	Examples

	4.9. Presentation Tags
	4.9.1. <ui:bold>
	4.9.2. <ui:italic>
	4.9.3. <ui:font>
	4.9.4. <ui:style>
	4.9.5. <ui:newline>
	4.9.6. <ui:tooltip>
	4.9.7. <ui:basicButton>
	4.9.8. <ui:basicLinkButton>
	4.9.9. <ui:link>

	4.10. Programming JSPs without HTML
	4.11. Customizing Tag Styles
	Attributes defining tag styles

	4.12. Making New JSP Tags
	4.12.1. Utilities and base classes
	4.12.2. Inheriting tag attributes from base tags.
	4.12.3. Widgets and events
	4.12.4. Layouts

	Chapter 5. Forms and Data Binding
	5.1. Forms
	5.1.1. FormWidget
	5.1.2. Controls
	5.1.3. Constraints
	Custom Constraints

	5.1.4. Data
	5.1.5. Converters
	5.1.6. Form validation

	5.2. Forms JSP Tags
	5.2.1. Common attributes for all form element rendering tags.
	5.2.2. <ui:form>
	Attributes
	Variables
	Examples

	5.2.3. <ui:formElement>
	Attributes
	Variables
	Examples

	5.2.4. <ui:label>
	Attributes
	Examples

	5.2.5. <ui:simpleLabel>
	Attributes
	Examples

	5.2.6. <ui:button>
	Attributes
	Examples

	5.2.7. <ui:linkButton>
	Attributes

	5.2.8. <ui:formKeyboardHandler>
	Attributes
	Examples

	5.2.9. <ui:formEnterKeyboardHandler>
	5.2.10. <ui:formEscapeKeyboardHandler>
	5.2.11. <ui:textInput>
	Attributes
	Examples

	5.2.12. <ui:autoCompleteTextInput>
	Attributes

	5.2.13. <ui:comboTextInput>
	Attributes

	5.2.14. <ui:textInputDisplay>
	Attributes
	Examples

	5.2.15. <ui:numberInput>
	Attributes

	5.2.16. <ui:numberInputDisplay>
	Attributes

	5.2.17. <ui:floatInput>
	Attributes

	5.2.18. <ui:floatInputDisplay>
	Attributes

	5.2.19. <ui:passwordInput>
	Attributes

	5.2.20. <ui:textDisplay>
	Attributes

	5.2.21. <ui:valueDisplay>
	Attributes

	5.2.22. <ui:textarea>
	Attributes
	Examples

	5.2.23. <ui:richtextarea>
	5.2.24. <ui:richTextAreaInit>
	Example

	5.2.25. <ui:textareaDisplay>
	Attributes

	5.2.26. <ui:hiddenInput>
	Attributes

	5.2.27. <ui:checkbox>
	Attributes

	5.2.28. <ui:checkboxDisplay>
	Attributes

	5.2.29. <ui:fileUpload>
	Attributes
	Examples

	5.2.30. <ui:dateInput>
	Attributes

	5.2.31. <ui:dateInputDisplay>
	Attributes

	5.2.32. <ui:timeInput>
	Attributes

	5.2.33. <ui:timeInputDisplay>
	Attributes

	5.2.34. <ui:dateTimeInput>
	Attributes

	5.2.35. <ui:dateTimeInputDisplay>
	Attributes

	5.2.36. <ui:select>
	Attributes

	5.2.37. <ui:selectDisplay>
	Attributes

	5.2.38. <ui:multiSelect>
	Attributes

	5.2.39. <ui:multiSelectDisplay>
	Attributes

	5.2.40. <ui:radioSelect>
	Attributes

	5.2.41. <ui:radioSelectItem>
	Attributes

	5.2.42. <ui:radioSelectItemLabel>
	Attributes

	5.2.43. <ui:checkboxMultiSelect>
	Attributes

	5.2.44. <ui:checkboxMultiSelectItem>
	Attributes

	5.2.45. <ui:checkboxMultiSelectItemLabel>
	Attributes

	5.2.46. <ui:conditionalDisplay>
	Attributes

	5.2.47. <ui:conditionFalse>
	5.2.48. <ui:conditionTrue>
	Examples

	5.2.49. <ui:listDisplay>
	Attributes

	5.2.50. <ui:automaticFormElement>
	Attributes
	Examples

	5.3. Form Lists
	5.3.1. FormListWidget
	5.3.2. FormListUtil
	5.3.3. Form Row Handlers
	5.3.4. Models
	5.3.5. In Memory Form List

	5.4. Form Lists JSP Tags
	5.4.1. <ui:formList>
	Attributes
	Variables
	Examples

	5.4.2. <ui:formListRows>
	Attributes
	Variables
	Examples

	5.4.3. <ui:formListAddForm>
	Attributes
	Variables
	Examples

	Chapter 6. Lists and Query Browsing
	6.1. Introduction
	6.2. Lists API
	6.2.1. A Typical List
	6.2.2. Fields
	6.2.3. Ordering
	6.2.4. Filtering
	6.2.5. Backend Data Provider
	ListSqlHelper mappings and converters

	ListSqlHelper naming strategies
	6.2.6. Quick Overview on How to Use

	6.3. Selecting List Rows
	6.4. List JSP Tags
	6.4.1. <ui:list>
	Attributes
	Variables
	Examples

	6.4.2. <ui:listFilter>
	Examples

	6.4.3. <ui:listFilterButton> and <ui:listFilterClearButton>
	Attributes
	Examples

	6.4.4. <ui:listRows>
	Attributes
	Variables
	Examples

	6.4.5. <ui:listRowButton>
	Attributes

	6.4.6. <ui:listRowLinkButton>
	Attributes
	Examples

	6.4.7. <ui:listRowCheckBox> And <ui:listRowRadioButton>
	Attributes

	6.5. Editable Lists

	Chapter 7. Other Uilib Widgets
	7.1. Trees
	7.1.1. TreeWidget & TreeNodeWidget
	7.1.2. Tree JSP tags
	<ui:tree>
	Attributes
	Examples

	7.2. Tabs
	7.2.1. TabContainerWidget
	7.2.2. Tab JSP tags
	<ui:tabContainer>
	Attributes

	<ui:tabBody>
	<ui:tabs>
	Attributes

	Usage of tab tags in JSP templates.

	7.3. Context Menu
	7.3.1. ContextMenuWidget & ContextMenuItem
	7.3.2. Rendering context menus with JSP template
	<ui:contextMenu>
	Attributes

	<ui:widgetMarker>
	Attributes

	Example: JSP template containing context menu.

	7.4. Partial Rendering
	7.4.1. The Two Steps
	7.4.2. Partial Rendering Example

	Chapter 8. Third-party Integration
	8.1. Spring Application Framework
	8.1.1. BeanFactory, ApplicationContext, WebApplicationContext
	8.1.2. Spring Localization Filter
	8.1.3. Widget Dependency Injection

	Chapter 9. Javascript Libraries
	9.1. Third-party Javascript Libraries
	9.1.1. Behaviour (http://bennolan.com/behaviour/)
	9.1.2. The DHTML Calendar (http://www.dynarch.com/projects/calendar/)
	9.1.3. Prototype (http://www.prototypejs.org/)
	9.1.4. script.aculo.us (http://script.aculo.us/)
	9.1.5. TinyMCE (http://tinymce.moxiecode.com/)
	9.1.6. Prototip (http://www.nickstakenburg.com/projects/prototip/)
	9.1.7. ModalBox (http://www.wildbit.com/labs/modalbox/)
	9.1.8. log4javascript (http://www.timdown.co.uk/log4javascript/)

	9.2. Aranea Clientside Javascript

